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Copy of slides

Go to my website: http://fanlab.stanford.edu
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Review paper reference
A more detailed discussion of neural networks for 
simulation and design is here: arXiv:2007.00084 
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Download and install software

If you would like to participate in the live demonstrations, 
please go to http://metanet.stanford.edu/
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Download GLOnets code

Click on “Code” tab
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Outline

• Network classes and mathematical formulation

• Discriminative networks

• Generative networks

• Dataless training of networks for optimization
• Demonstration (http://metanet.stanford.edu/)
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Outline

• Network classes and mathematical formulation
• Discriminative versus generative models

• Network building blocks and training

• Data structures and network architectures

• Discriminative networks

• Generative networks

• Dataless training of networks for optimization
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Deep neural networks
A deep neural network can model the nonlinear 
relationships between input and output patterns.
• Highly nontrivial relationships can be specified by 

performing a series of nonlinear computations.

• Accurate correlations between input and output patterns 
can be achieved by a training process, which uses training 
data to specify network weights.
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Discriminative models
Discriminative models infer knowledge from training data 
to perform classification and regression tasks.
• Generally maps data as: y = f(x).  

• For many optics problems, models are used for regression.        
x: physical variables; y: physical responses.

• Has many forms: support vector machines, naïve Bayes 
classifiers, neural networks, etc.
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Discriminative models 2
With the functional form y = f(x), discriminative 
models can perform one-to-one and many-to-one 
mappings but not one-to-many mappings.
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Generative models
Generative models have latent space (random 
noise) inputs that can be sampled to produce a 
distribution of outputs.
• Can perform one-to-many mappings.

• Can be conditioned with device labels including 
physical variables and physical responses.
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Generative models 2
Generative models can produce a wide range of data 
structures that mimic the training data distribution.
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Network building blocks: neurons
The basic building block for many deep network 
layers is the neuron.
• Input values from prior layer are each multiplied by weight 

values 𝑤𝑖, added together, and then processed by a 
nonlinear activation function.

• The weights are determined from network training.
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Building blocks: convolutional layers
In a convolutional layer, a kernel is convolved over all 
spatial locations of an image to produce a feature map.
• The weights in the kernel are trainable.

• The use of the convolution operation leads to local, 
translationally invariant data processing.

𝒚 = 𝒇 ෍𝒘𝒊𝒙𝒊

Dot product between 

kernel and image

Image

Kernel

Feature map

Non-linear activation
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Data structure: discrete values

Any set of discrete physical variables can be inputted 
into the network as discrete values.
• Typically normalized and inputted into a layer of fully 

connected neurons.
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Data structure examples
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Data structure: images
Freeform photonic devices that cannot be described by 
a few discrete values can be processed as images.
• Images can be 1D (vectors), 2D (matrices), or 3D (tensors).

• Typically normalized and inputted into a convolutional layer.
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Data structure: time sequences
Time-dependent electromagnetic phenomena can be 
captured using recurrent neural networks (RNNs).
• The network uses feedback to capture system history.

• The network can be configured for discrete value, image, 
and graph data structures.
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Training process

• The goal of training is to minimize the loss function, 
which represents error between the training set 
response and the network response.

• The network training process is as follows:
• Create a training set and subdivide it into training, 

validation, and test datasets.

• Initialize neural network with random weights, set 
hyperparameters, and perform network training until loss 
function asymptotically plateaus.

• Use validation dataset to test the performance of the 
network, tweak hyperparameters, and repeat training.

• Once the network is set, use the test dataset to determine 
final network performance.
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Discriminative networks: loss functions

• Training data comprises input/output pairs ො𝑥(𝑛), ො𝑦(𝑛) .

• For an input ො𝑥(𝑛), the network output is 𝑦(𝑛).  We want 
𝑦(𝑛) to be as close to ො𝑦(𝑛) as possible.

• The most popular loss function is least mean squares:

The loss function here is calculated for batch size N for 
a given training epoch.
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Generative networks: loss functions
• The training set and generated device distributions 

should be treated as probability distributions.
• The training set devices can be regarded as samples from the 

probability distribution P(x).

• The distribution of devices produced by the generative 
network can be treated as the probability distribution Q(x).
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Generative networks: loss functions 2

• We want the training process 
to get Q(x) to match with P(x).  
Two types of loss functions 
are typically used:
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• KL Divergence quantifies how different one probability 
distribution is from another:

• Cross entropy describes how many bits of information 
are required when a coding scheme optimized for Q(x) 
is applied to P(x):

𝐷𝐾𝐿 𝑃||𝑄 = න𝑃 𝒙 log
𝑃 𝒙

𝑄 𝒙
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Jonathan Fan, Stanford University



Backpropagation
• To perturb the network weights in a manner that 

reduces the loss function, we perform backpropagation.
• Backpropagation is based on the chain rule.

• Backpropagation is used to calculate gradients.

• Example: a network consisting of just a single neuron:

Gradient Backpropagation
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Outline

• Network classes and mathematical formulation

• Discriminative networks
• Discriminative networks as surrogate solvers

• Discriminative networks for inverse design

• The curse of dimensionality

• Generative networks

• Dataless training of networks for optimization
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Surrogate solvers
A popular application of discriminative networks is to 
create surrogate EM solvers that replace standard solvers.

• There is a substantial one time computation cost for creating 
training data and training the network.

• The trained network can perform inference with orders of 
magnitude faster times than a standard solver.
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How fast?

• Trained network, evaluated using a Tesla Quadro 
M6000 GPU, can compute 9,400 spectra/second.
• Takes 23 hours to produce 815 million spectra.

• 8.2 × 105 faster than simulations in CST Microwave 
Studio.

• 95% of devices have a mean squared error less 
than 3.4 × 10-3.
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• Network is trained (18,000 training data) 
to predict transmission spectra of a 
metasurface comprising silicon cylinders.

Nadell, Opt Express 27(20), 27523 (2019)



Guided wave devices

Guided photonic structures in the form of fibers, 
photonic crystals, and other photonic/plasmonic on-chip 
components have been modeled over the last decade.
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Free space nanophotonic devices

Neural network models of nanophotonic scatterers, 
metasurfaces, and absorbers have only recently 
been researched.
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Early deep networks
A fully connected deep network was used to model 
nonlinear electronic components, such as MESFETS.

• Network is trained with 1000 training data.

• Is integrated with commercial CAD optimization software.
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Zaabab, IEEE Trans Microwave Theory and Techniques 43(6), 1349 (1995)

Input: gate length/width, 
channel thickness, doping 
density, gate-source 
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Dots: network Lines: physical model



Nanoparticle scatterers
A fully connected neural network could predict the 
scattering spectra of concentric nanoshell scatterers.
• System comprises 8 shells of alternating dielectric material.

• 50,000 training data points were used.
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Peurifoy, Sci Adv 4, eaar4206 (2018)

Network architecture



Electric polarization
A convolutional network can be trained to predict 
the electric polarization distribution within a set of 
illuminated nanostructures.

• The network architecture is a U-Net.

• 30,000 training data points were used.
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Wiecha, Nano Lett 20, 329 (2020)

Example: metallic scatterer



Inverse design with discriminative models
Discriminative models are suitable for solving forward 
problems but cannot be directly trained to solve 
inverse problems.
• Most inverse problems in electromagnetics involve one-to 

many mappings which destabilize network training.
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Inverse design: backpropagation

We can use backpropagation to perform gradient 
ascent within the design space.
• The loss function is defined as the difference between the 

outputted and desired optical response.

• The input device metrics are iteratively adjusted to reduce 
the loss function.
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Inverse design: backpropagation 2

The backpropagation method is consistent with that 
for adjusting the weights of the network, except that 
the weights are kept constant and perturbations are 
applied to the input values.
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Inverse design: conventional optimizer
Surrogate network solvers can be used together with 
conventional optimizers.
• Optimization methods include Newton's methods, 

interior-point algorithms, evolutionary algorithms, trust-
region methods, and particle swarm optimization. 

• Example: patch antenna design.
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Inverse design: tandem network
To reduce the one-to-many mappings problem, a forward 
network is first trained.  It is then fixed and combined 
with an inverse network that is subsequently trained.
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Dimensionality reduction
A fundamental problem issue with scaling neural 
networks is termed the curse of dimensionality: the 
amount of required training data increases exponentially 
as the system degrees of freedom increase.
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Outline

• Network classes and mathematical formulation

• Discriminative networks

• Generative networks
• Variational autoencoders

• Generative adversarial networks

• Dataless training of networks for optimization

• Demonstrations (http://metanet.stanford.edu/)
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Generative networks
• Recall, generative networks have a latent space 

input, which enables one-to-many mappings.

• The training process for generative networks is 
different from that of discriminative networks 
because different assumptions can be made about 
the form of P(x) and Q(x).
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Ways to use generative networks
For inverse design, generative networks are typically 
used in one of three ways:
• An unconditional network generates variations of devices 

from a training set, some which are high performing.

• A conditional network generates distributions of devices 
operating at interpolated operating parameters.

• Classical optimization is performed in the latent space.
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Images of freeform devices
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Nano Lett., 17(6), 3752-3757 (2017)
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We can use generative networks to learn from images of 
complex devices, such as freeform nanophotonic structures.



Download and install software

• If you would like to see topology optimization code, 
please go to http://metanet.stanford.edu/
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Click on “Code” tab

Download adjoint topology 
optimization code
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Variational autoencoders (VAEs)
• VAEs are trained to reconstruct input data.  As a 

generative network, we want to interpolate training data 
by sampling the latent space.

• The VAE encodes input data to latent space distributions.
• The distributions are Gaussian defined by a mean and 

covariance matrix.

• The decoder is a generative network with a latent space 
input.
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Conditional VAE for inverse design
A VAE can be conditioned to output freeform metasurface
structures as a function of desired spectral response.
• Training set includes H-shape, cross, and split ring shapes.
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Generative adversarial networks (GANs)
GANs are a method to train a generator to fit the 
implicit probability distribution of a training set.
• The discriminator is a classifier that attempts to determine 

whether the inputted data is from the training set or 
generator.

• The generator attempts to generate devices from latent 
variable inputs that match the training set.
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GAN loss function

• The discriminator attempts to beat the 
generator by differentiating it from the 
training set. 
• Maximize cross entropy loss between the 

generated and training set distributions.

• The generator attempts to fool the 
discriminator by mimicking the training 
set.
• Minimize cross entropy loss between the 

generated and training set distributions.
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Conditional GAN as inverse model
• The GAN is trained to learn basic shapes.

• Generator is conditioned on spectral response.

• There are two discriminators, a “simulator” that enforces 
proper spectral response and a “critic” that enforces 
shape from training set.

July 13, 2020 Jonathan Fan, Stanford University

Desired 
spectra 

Reconstructed 
spectra 

Latent 
variable

Evaluating 
shape

Liu, Nano Lett, 18, 6570 (2018)



Training dataset

500

𝜆
(n

m
)

35° 55° 85°

Deflection angle

900

1300

256 pixels

1
2

8
 p

ix
e

ls

Metagrating

unit cell image

Conditional GANs for interpolation
We use high efficiency, topology-optimized 
metagratings in our training data set.

Real

Fake

Generated

Structure

…

…

…

…

θ

λ

Random noise

Generator

Discriminator

FC

dconv

conv FC

Gaussian filter

July 13, 2020 Jonathan Fan, Stanford University
J. Jiang, ACS Nano 13, 8872 (2019)



Mimicking real devices
Do GAN-generated structures perform as working 
metagratings?  We test them as 65° output, TE-pol 
devices operating at λ = 1100nm.

Random binary patterns
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Progressive growth of GANs

A new training scheme based on progressive growth 
of the network architecture and training set can lead 
to a substantially improved GAN.
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Progressively growing networks
Progressively increasing the spatial resolution of the 
training set and network helps the GAN learn.
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Benchmarking performance

Over 50% of the best PGGAN devices have higher 
efficiencies than the best topology-optimized devices 
and are robust.
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Outline

• Network classes and mathematical formulation

• Discriminative networks

• Generative networks

• Dataless training of networks for optimization
• Global topology optimization networks (GLOnets)

• Demonstration (http://metanet.stanford.edu/)
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Topology optimization revisited

The adjoint variables method is a local optimizer that 
uses gradient descent to improve device performance.
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Reframing topology optimization

Can we teach neural networks photonics using 
physics-based simulations?
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GLOnets: theoretical background
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Efficiency distributions
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Comparative results
A comparison of the best overall devices shows 
that GLOnet can generate higher efficiency devices 
for the majority of operating parameters.
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Adjoint-based topology optimization
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GLOnet required 10x less computational cost compared 
to brute force topology optimization.Jonathan Fan, Stanford University



Visualizing GLOnet
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Plot of device efficiencies and geometries, depicted 
using principle components analysis. 

• Device parameters: λ = 850 nm and θ = 65°

Jonathan Fan, Stanford University



GLOnet stability 

We train 8 unconditional GLOnets independently and the 
networks converge to the same optimal device 6 times.
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97% 97% 96% 97%

93%

97% 97% 97%

95

90

85

Jonathan Fan, Stanford University



Summary and Outlook

• Machine learning provides powerful methods to process 
data in highly non-linear and non-intuitive ways.

• There are still a lot of challenges and opportunities.
• We require new concepts that intimately combine the 

physical structure of Maxwell with machine learning.

• We require new electromagnetic simulators that can operate 
at significantly faster time scales.

• We need to better streamline the training and refinement of 
neural networks for solving photonics problems, both from a 
data usage and user interface point of view.

• We need to coordinate research efforts better to benchmark 
algorithms and devices.

July 13, 2020 Jonathan Fan, Stanford University



Coordinating research efforts
Machine learning research in the CS community is 
driven through open source coding and proper 
benchmarking of algorithms with common training data.

L. Fei-Fei et al., “Imagenet large scale visual recognition challenge.” arXiv: 1409.0575.
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http://metanet.stanford.edu
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http://metanet.stanford.edu
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Metamaterials events and design contest

July 13, 2020 Jonathan Fan, Stanford University

• I am the new chair of the OSA Photonic Metamaterials 
technical group, I am planning to have a design contest.

• If you want to stay in the loop, please sign up:

https://www.osa.org/en-us/get_involved/technical_groups/

https://www.osa.org/en-us/get_involved/technical_groups/

