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Review paper reference

A more detailed discussion of neural networks for
simulation and design is here: arXiv:2007.00084
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The data sciences revolution is poised to transform the way phetonic systems are simulated and designed. Photonics are in many ways
an ideal substrate for machine learning: the objective of much of computational electromagnetics is the capture of non-linear
relationships in high dimensional spaces, which is the core strength of neural networks. Additionally, the mainstream availability of
Maxwell solvers makes the training and evaluation of neural networks broadly accessible and tailorable to specific problems. In this
Review, we will show how deep neural networks, configured as discriminative networks, can leam from training sets and operate as high-
speed surrogate electromagnetic solvers. We will also examine how deep generative networks can learn geometric features in device
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Download and install software

If you would like to participate in the live demonstrations,
please go to http://metanet.stanford.edu/
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GLOnets

Jonathan Fan, Stanford University

GlLobal Optimization NETwork or GLOnet is a global optimizer,
based on a generative neural network, which can output ensembles
of highly efficient topology-optimized metasurfaces.

J. Jiang and J. A. Fan

Ji\ k X
software pacl age‘ arXiv | paper

Metagrating Topology Optimization

Jonathan Fan, Stanford University

Basic topology optimization codebase for simple periodic
metasurface deflectors or metagratings. This package utilizes
adjoint-based gradient descent in order to generate devices with
freeform geometries. Such devices are physically complex and
demonstrate ultra-high efficiencies.

D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan

software package Reticolo RCWA solver paper

Jonathan Fan, Stanford University

Click on “Code” tab

— Download GLOnets code
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Outline

* Network classes and mathematical formulation
e Discriminative networks
 Generative networks

e Dataless training of networks for optimization
 Demonstration (http://metanet.stanford.edu/)
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Outline

* Network classes and mathematical formulation
e Discriminative versus generative models
* Network building blocks and training
e Data structures and network architectures
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Deep neural networks

A deep neural network can model the nonlinear
relationships between input and output patterns.

e Highly nontrivial relationships can be specified by
performing a series of nonlinear computations.

* Accurate correlations between input and output patterns
can be achieved by a training process, which uses training
data to specify network weights.

Network architecture

Input photonic
data structure

* Physical attributes
* Device image

» Device graphs

+ Time sequence

Output data structure
"""""""" » Spectral response

» Device geometry

» Device efficiency

 Field profile

Fully connected Convolution layers
layers

Network building blocks
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Discriminative models

Discriminative models infer knowledge from training data
to perform classification and regression tasks.
* Generally maps data as: y = f(x).
* For many optics problems, models are used for regression.

X: physical variables; y: physical responses.

* Has many forms: support vector machines, naive Bayes
classifiers, neural networks, etc.

A‘\;.lﬁ\\.
N NeA

§ Surrogate model

Geometry 53

Thickness, t

Diameter, d Ag( Incident light

Width, w Frequency, w
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Device response y

Discriminative models 2

With the functional form y = f(x), discriminative
models can perform one-to-one and many-to-one
mappings but not one-to-many mappings.

Specific response can have 100

many-to-one mapping, >

‘G

2 40 SiN

&= 20 Sio,

— 100nm
0
: - 450 600 750
Device space x Frequency [THz|
Z.Yu, ACS Phot 5, 1365 (2018)
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Generative models

Generative models have latent space (random
noise) inputs that can be sampled to produce a
distribution of outputs.

* Can perform one-to-many mappings.

* Can be conditioned with device labels including
physical variables and physical responses.

Input Output
Conditioning Generated distribution Training set
arameters 6 QK) P()
e N A ~ A
‘ match
= x| =P 5
= —> .
= *e O
Random Design space
Noise z
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Generative models 2

Generative models can produce a wide range of data
structures that mimic the training data distribution.

Karras, ICLR 2018 ford |
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Network building blocks: neurons

The basic building block for many deep network

layers is the neuron.

* Input values from prior layer are each multiplied by weight
values w;, added together, and then processed by a
nonlinear activation function.

* The weights are determined from network training.

Inputs

Rectified Linear Unit

Sigmoid Hyperbolic Tangent

DW D ﬂ I
A : 1 -

-

W3

(ReLU)

a=ZWixi+b

Activation
function

Leaky ReLU

f(a)

Output to neurons
in next layer

y

Single neuron
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Building blocks: convolutional layers

In a convolutional layer, a kernel is convolved over all
spatial locations of an image to produce a feature map.
* The weights in the kernel are trainable.

* The use of the convolution operation leads to local,
translationally invariant data processing.

Image Feature map

Dot product between
kernel and image

n //%I"\— /

B - y=Ff 2 WiX;

- | i [~

|| ] //,///_ \

71

Kernel Non-linear activation
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Data structure: discrete values

Any set of discrete physical variables can be inputted
into the network as discrete values.

» Typically normalized and inputted into a layer of fully
connected neurons.

Network
Input

Data structure examples ~_

Geometry

Thickness, t 152 |

Diameter, d ‘Incident light

Width, w Frequency, w
d Polarization, p

HW

Material Type
R

Permittivity,
Permeability, u
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Data structure: images

Freeform photonic devices that cannot be described by
a few discrete values can be processed as images.

* Images can be 1D (vectors), 2D (matrices), or 3D (tensors).
* Typically normalized and inputted into a convolutional layer.

Data structure examples Network

n(x): 1 xN
vector

n(x, y):

Convolution kernel
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Data structure: time sequences

Time-dependent electromagnetic phenomena can be
captured using recurrent neural networks (RNNs).
* The network uses feedback to capture system history.

* The network can be configured for discrete value, image,
and graph data structures.

Data structure example Network -
P Structure Output: Time sequence I
IOut(t) IOUt

Input: Time sequence of |,
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Training process

* The goal of training is to minimize the loss function,
which represents error between the training set
response and the network response.

* The network training process is as follows:

* Create a training set and subdivide it into training,
validation, and test datasets.

* |nitialize neural network with random weights, set
hyperparameters, and perform network training until loss
function asymptotically plateaus.

* Use validation dataset to test the performance of the
network, tweak hyperparameters, and repeat training.

 Once the network is set, use the test dataset to determine
final network performance.

Stanford | ENGINEERING
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Discriminative networks: loss functions

 Training data comprises input/output pairs (3?("),37(")).

* For an input £, the network output is y(™. We want
y(™ to be as close to $™ as possible.

* The most popular loss function is least mean squares:

N
. 1 N2
L(y,y) = ﬁZ()’(n) — y(n))
n=1

The loss function here is calculated for batch size N for
a given training epoch.

Stanford | ENGINEERING
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Generative networks: loss functions

* The training set and generated device distributions
should be treated as probability distributions.

* The training set devices can be regarded as samples from the
probability distribution P(x).

Complete design space S
A

Network

distribution Q(x) f\ r&ining set

distribution P(x)

Distribution

Device X
* The distribution of devices produced by the generative
network can be treated as the probability distribution Q(x).
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Generative networks: loss functions 2

fAd C lete desi S
* We want the training process o0 0 P

to get Q(x) to match with P(x). J\/g{&iiﬁtp(x)
s Device x

Two types of loss functions
are typically used:

* KL Divergence quantifies how different one probability

distribution is from another:

Diu (PI1Q) = j P(x)log

Distribution

P(x)
Q(x)
* Cross entropy describes how many bits of information

are required when a coding scheme optimized for Q(x)
is applied to P(x):

HP,Q) = — f P(x) log Q(x) dx
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Backpropagation

e To perturb the network weights in a manner that
reduces the loss function, we perform backpropagation.
* Backpropagation is based on the chain rule.
* Backpropagation is used to calculate gradients.

 Example: a network consisting of just a single neuron:

Gradient Backpropagation

dL 0L Oda
ow; da ow; oL oL dy oL

Inputs /\ da 0y " da a_y
(E)— TN N

y=f@ -
i

Loss function
Activation
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Outline

e Discriminative networks
* Discriminative networks as surrogate solvers
e Discriminative networks for inverse design
* The curse of dimensionality
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Surrogate solvers

A popular application of discriminative networks is to
create surrogate EM solvers that replace standard solvers.

* There is a substantial one time computation cost for creating

training data and training the network.

* The trained network can perform inference with orders of
magnitude faster times than a standard solver.

Physical Variables (x) N

Geometry R
Thickness, t ‘ %(fﬁr |
Diameter, d S5 Incident light
Width, w Y/

Frequency, w
Polarization, p

d
| W
l. Material type
NN
Permittivity, €
Permeability, u

§ Surrogate model
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How fast?

* Network is trained (18,000 training data)
to predict transmission spectra of a
metasurface comprising silicon cylinders.

* Trained network, evaluated using a Tesla Quadro
M6000 GPU, can compute 9,400 spectra/second.
* Takes 23 hours to produce 815 million spectra.

e 8.2 x 10° faster than simulations in CST Microwave
Studio.

* 95% of devices have a mean squared error less
than 3. 4 x 103,

(m)

Transmittance

Nadell, Opt Express 27(20), 27523 (2019) ‘ MSE (x10%)
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Guided wave devices

Guided photonic structures in the form of fibers,
photonic crystals, and other photonic/plasmonic on-chip
components have been modeled over the last decade.

Photonic crystal Waveguide coupler Waveguide splitters 3D photonic crystal 2D Grating coupler

Optical Fibre

A
= LTI

il
X

Photonic crystal fiber Plasmonic waveguide Plasmonic filter Photonic_ crystal Si Bragg grating

o

2012-2016 2018-present
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Free space nanophotonic devices

Neural network models of nanophotonic scatterers,
metasurfaces, and absorbers have only recently
been researched.

Nanoparticle Thin film stacks Plasmonic scatterer Topological insulator Metasurfaces
K -1,
| |
V 4 5
L, !
Metagrating Chiral metamaterial Plasmonic absorber Phase change Wave propagation
structure
lo* lov o [o
285 3
Wh&‘“ |._qu $i0; S H—
2017-2018 2018-2019
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Early deep networks

A fully connected deep network was used to model
nonlinear electronic components, such as MESFETS.

* Network is trained with 1000 training data.

* |s integrated with commercial CAD optimization software.

Output: currents and Dots: network Lines: physical model
450 T T Y T T T T
charges at the gate, o

400+
drain, and source

Drain current ids (MA)

Input: gate length/width,
channel thickness, doping
density, gate-source L/

voltage, gate-drain voltage o5 Eﬁn.miw.tag.f\?ds I

0 00 00 09 Q. 0. g me
L L X
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Nanoparticle scatterers

A fully connected neural network could predict the
scattering spectra of concentric nanoshell scatterers.

» System comprises 8 shells of alternating dielectric material.
* 50,000 training data points were used.

Comparing NN approximation to simulation

5 -
Network architecture a5k
Output 4 »
/\}’a
%5 § N 3.5
Yy v =
.VJ/ \ H-h6 3 B
y/ == Simulation
o ’ === NN approx
25p%RY -~ -~ = L. Closest train
= =(losest train
y 2F

400 450 500 550 600 650 700 750 800
Wavelength (nm)

Peurifoy, Sci Adv 4, eaar4206 (2018)
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Electric polarization

A convolutional network can be trained to predict
the electric polarization distribution within a set of
illuminated nanostructures.

volume discretization

3D convolutional neural network electric polarization of nanostructure

|
shortcut connections _
v
i

6 channels

residual
blocks

residual
connections

x32 %32

* The network architecture is a U-Net.
e 30,000 training data points were used.

Example: metallic scatterer

o

height: 1 x 15nm P
W

1 £
(76 1410”'77
5nm)

. July 13, 2020
Wiecha, Nano Lett 20, 329 (2020)
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Inverse design with discriminative models

Discriminative models are suitable for solving forward
problems but cannot be directly trained to solve
inverse problems.

 Most inverse problems in electromagnetics involve one-to
many mappings which destabilize network training.

Forward model response space Inverse model response space
| . : . . . :
4.06 _
091 Analytic model
S ~ E 40}
0.8 - E ™ -
= Analytic . Network model
) model = :
@ 0.7 I 398
5 Example: microstrip
0.6/ bandpass filter
3.94¢
0.5— - - - — - - -
3.94 3.98 4.02 4.06 0.5 0.6 0.7 0.8 0.9 1
L, (mm) x = mag(S, Ny,
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Inverse design: backpropagation

We can use backpropagation to perform gradient
ascent within the design space.

 The loss function is defined as the difference between the
outputted and desired optical response.

* The input device metrics are iteratively adjusted to reduce
the loss function.

I Desired

>

@

(7))

c

o

7l

< Gradient ascent

o | |

QO | |

> o l |
a Final Starting

1 .
device | device

Device space X
July 13, 2020 Jonathan Fan, Stanford University Stanford ‘ ENGINEERING

Electrical Engineering



Inverse design: backpropagation 2

The backpropagation method is consistent with that
for adjusting the weights of the network, except that
the weights are kept constant and perturbations are
applied to the input values.

Gradient Backpropagation

dL 0L Oda oL oL 9%
dx; 0a 9dx; — Y

Inputs/-\ da ay-aa 9y

f
o DalmEd
0

. . Loss function
Activation

function
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Inverse design: conventional optimizer

Surrogate network solvers can be used together with
conventional optimizers.

e Optimization methods include Newton's methods,
interior-point algorithms, evolutionary algorithms, trust-
region methods, and particle swarm optimization.

 Example: patch antenna design.

Evolutionary algorithm followed

Neural network by gradient-based optimization
Parameterize the Initial Population
Design (Design parameters )
l ,_ - .I;
Random Sampling of | Fitness Evaluation
the Design Space I
| |
Data Generation using a N END? Yes Output Design
Full-wave Solver i
l I No
P ' Selection, Crossover, ?@I
Pre-training of the ' '
Neural Network Madel [| ! Mutation "
. l - Yes
: Update Population G;a;:;r:tnﬂgz:d
[ I :
N
Jonathan Fan, Stanford University Stanford ‘ ENGINEERING
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Inverse design: tandem network

To reduce the one-to-many mappings problem, a forward
network is first trained. It is then fixed and combined
with an inverse network that is subsequently trained.

Neural network model

Pretrained forward modeling network

| Forward NN device space )

—

Device response y

Device space X

Intermediate layer M

Example: thin film stacks

100
80
E 60
Z 40
I:_:
2 20
= Target response = Target response = Target response
= =Design response = = Design response = =Design response
0 L 0 - ; 2 0 - d -
300 400 500 600 700 300 400 500 600 700 300 400 500 600 700
Frequency [c/al Frequency [c/a] Frequency [c/a]
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Dimensionality reduction

A fundamental problem issue with scaling neural
networks is termed the curse of dimensionality: the
amount of required training data increases exponentially
as the system degrees of freedom increase.

Split ring stack 1D freeform 2D freeform
~10 parameters ~100 voxels ~1000 voxels
Iy u"r 1 '
Il
10° |
.GNJ Parameterized [1] Zhang, Adv. Theory Sim. 2, 1800132 (2019).
S 7 geometries ““' [2] Malkiel, Light. Sci. & Appl. 7, 60 (2018).
o 10 . [3] Zhang, Photon. Res. 7, 368 (2019).
s — [4] Ma, ACS Nano 12, 6326 (2018).
E’ Freeform {5} Zazbab, IEEEIMTT-S 1,393 (1994).)
= . 6] Andrawis, Appl. Opt. 55, 2780 (2016).
S 10° geometries [7] Ferreira, J. Light. Technol. 36, 4066 (2018).
(o [8] Peurifoy, Sci. Advances 4, eaar4206 (2018).
[9] Asano, Opt. Express 26, 32704 (2018).
[10] Pilozzi, Commun. Phys. 1, 57 (2018).
107 0 1 . 2 . 3 g
10 10 10 10
Degrees of freedom
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Outline

e Generative networks
e Variational autoencoders
e Generative adversarial networks
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Generative networks

e Recall, generative networks have a latent space
input, which enables one-to-many mappings.

* The training process for generative networks is
different from that of discriminative networks

because different assumptions can be made about
the form of P(x) and Q(X).

Input Output

Generated distribution Training set

Q(x) P(X)

'S ~ A
A - match A
“ o

Conditioning
parameters 6

" |||I||||| ‘l‘

Random

Noise z
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Ways to use generative networks

For inverse design, generative networks are typically
used in one of three ways:

* An unconditional network generates variations of devices
from a training set, some which are high performing.

* A conditional network generates distributions of devices
operating at interpolated operating parameters.

* Classical optimization is performed in the latent space.

Unconditional distribution Conditional distribution Optimization in the latent space

Q(x) Training data Q(x| A) Training data

+ ._I_ [ _I_ [ t
O’I-. ° + °
+ .. + .
+, . .

\ . Optimal g
\ A =1000 nm

i latent
Generated data Generated data variable
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Images of freeform devices

We can use generative networks to learn from images of
complex devices, such as freeform nanophotonic structures.
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Download and install software

* If you would like to see topology optimization code,
please go to http://metanet.stanford.edu/
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Jonathan Fan, Stanford University

GlLobal Optimization NETwork or GLOnet is a global optimizer,
based on a generative neural network, which can output ensembles
of highly efficient topology-optimized metasurfaces.

J. Jiang and J. A. Fan

software package arxXiv paper

Metagrating Topology Optimization
Jonathan Fan, Stanford University

Basic topology optimization codebase for simple periodic
metasurface deflectors or metagratings. This package utilizes
adjoint-based gradient descent in order to generate devices with
freeform geometries. Such devices are physically complex and
demonstrate ultra-high efficiencies.

Click on “Code” tab

D. Sell, J. Yang, S. Doshay, R. Yang, an D@Wﬂ Ioad adjOi nt to p0|ogy

software package

Jonathan Fan, Stanford University
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Variational autoencoders (VAEs)

* VAEs are trained to reconstruct input data. As a
generative network, we want to interpolate training data
by sampling the latent space.

* The VAE encodes input data to latent space distributions.

* The distributions are Gaussian defined by a mean and
covariance matrix.

* The decoder is a generative network with a latent space
Input.

Training Encoder
pattern Latent
QY ‘\

Reconstructed
patter

Mean space
o
| | |
sample
O W
@ O
g2 Std. dev Latent

vector
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Conditional VAE for inverse design

A VAE can be conditioned to output freeform metasurface
structures as a function of desired spectral response.

* Training set includes H-shape, cross, and split ring shapes.

Network architecture
Reflection

spectrum Desired spectrum Network output
- y : : : ! ] 1.0f- : : ! ! : ]
L 4 0.8f
[ — R 1 %05‘
— Ry E
—04—_ny 1 ©oaf
I I - zOAZ-
Latent vector e T T

Frequency (THz) Frequency (THz)

Examples of generated shapes

1.0F -
(d)
0.Bp
@
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z ’r
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Generative adversarial networks (GANSs)

GANSs are a method to train a generator to fit the
implicit probability distribution of a training set.

* The discriminator is a classifier that attempts to determine
whether the inputted data is from the training set or
generator.

* The generator attempts to generate devices from latent
variable inputs that match the training set.

Training set @[@ @_

Real
Latent > @ ‘
; Generator @
yarlabl? ﬁ Fake

5 7
&

=)
Generated

Structure
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GAN loss function

* The training process can be considered as a two player
game.

* The discriminator attempts to beatthe |  ciassifier
generator by differentiating it fromthe | _ <4=;=> .
. . C_) ralining se
tra|n|ng set. g distribution
* Maximize cross entropy loss between the .‘QB
generated and training set distributions. il
Device x
* The generator attempts to fool the
discriminator by mimicking the training
SEt. c Training set
o = distribution
* Minimize cross entropy loss between the 32 P(x)
generated and training set distributions. ,‘53
pm—
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Conditional GAN as inverse model

* The GAN is trained to learn basic shapes.
* Generator is conditioned on spectral response.

* There are two discriminators, a “simulator” that enforces
proper spectral response and a “critic” that enforces
shape from training set.

Reconstructed .

Desired spectra
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Conditional GANs for interpolation

We use high efficiency, topology-optimized
metagratings in our training data set.

Training dataset ‘ .
R — N Y-

Metagrating ‘ .
oo, NPT
q . o
‘ A Discriminator

|
|
. . |
unit cell image |
|
:
' 2l
|
1{] BERESE, B )
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|

256 pixels

A(nm)
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Deflection angle

Generator Gaussian filter

Generated
Random noise Structure
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Mimicking real devices

Do GAN-generated structures perform as working
metagratings? We test them as 65° output, TE-pol
devices operating at A = 1100nm.

Random binary patterns Training set patterns GAN-generated patterns
readld
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Progressive growth of GANs

A new training scheme based on progressive growth
of the network architecture and training set can lead
to a substantially improved GAN.

Training cycle
Initial sparse gcy Final dense
training set . generated dataset
Training set Network growth
0 32l 'B-Ifid‘l-'c_. II:I(
m Eu | ‘ S St - 1 A a
Parameter space Augment Generate Parameter space
,\ ,\p training set Training set growth devices P

- O AV AV O E
26 d Filter out high efficiency, £
© robust devices [
0 ) T
= =

O—6—6—0 e

Deflection ang|e SO|VeI’ Deflection angle
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Progressively growing networks

Progressively increasing the spatial resolution of the
training set and network helps the GAN learn.

Training dataset

S K e
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Benchmarking performance

Over 50% of the best PGGAN devices have higher
efficiencies than the best topology-optimized devices
and are robust.

Gradient-based

topology optimization PGGAN-generated devices

100

- 100 =
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Outline

e Dataless training of networks for optimization
* Global topology optimization networks (GLOnets)
 Demonstration (http://metanet.stanford.edu/)
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Topology optimization revisited

The adjoint variables method is a local optimizer that
uses gradient descent to improve device performance.

- A =600 nm
0 = 40 degrees

Update of refractive index n¥: H

ith segment 1
g w1 _ g, . OFff

neEm Y _’_’_?_ﬂl
l
iteration k +I 0 20 40 60 80 100
Absolute Efficiency (%)
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Reframing topology optimization

We introduce global topology optimization networks
(GLOnets) as a new method for global optimization.

Forward simulation

\

. 0

Generator Index profile x '_A\Ir —v
p| | Grating [ | W

N \ sio, T
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‘ < Air 94/

Random dconv  Gaussian crating I 1 B
Noise z filter sio, X ¢
Gradient of
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GLOnets: theoretical background

Optimization problem

¢ := argmax / o (Eff(x) — Eff,02) - Py(x)dx
¢ S

Nanapllypozt@m'@s-2019-0330 YoMathan Fan, Stanford University



Efficiency distributions

B Adjoint-based topology optimization X % The highest efficiency

Bl Conditional GLOnet optimization X % The highest efficiency
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Comparative results

A comparison of the best overall devices shows
that GLOnet can generate higher efficiency devices
for the majority of operating parameters.

Adjoint-based topology optimization 3 GLOnet optimizations
1300 q 100 1300 . 100
1200 Igo 3 1200 0 &
E 1100 | @  E 1100 3
= 1000 C (o0 8 = 1000 |80 S
2 = 9
& 900 [70 3 £ 900 |0 2
() o) -~ .
g 800 g £ 800 =
60 <
700 s = 700 0 5
600 50 600 50
40 50 60 70 80 40 50 60 70 80
Deflection angle (deg) Deflection angle (deg)

GLOnet required 10x less computational cost compared
to brute force topology optimization.



Visualizing GLOnet

Plot of device efficiencies and geometries, depicted
using principle components analysis.

* Device parameters: A =850 nm and 0 = 65
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GLOnet stability

We train 8 unconditional GLOnets independently and the
networks converge to the same optimal device 6 times.
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Summary and Outlook

* Machine learning provides powerful methods to process
data in highly non-linear and non-intuitive ways.

* There are still a lot of challenges and opportunities.

* We require new concepts that intimately combine the
physical structure of Maxwell with machine learning.

* We require new electromagnetic simulators that can operate
at significantly faster time scales.

* We need to better streamline the training and refinement of
neural networks for solving photonics problems, both from a
data usage and user interface point of view.

 We need to coordinate research efforts better to benchmark
algorithms and devices.
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Coordinating research efforts

Machine learning research in the CS community is
driven through open source coding and proper
benchmarking of algorithms with common training data.

ImageNet Challenge
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http://metanet.stanford.edu

Metanet Contribute Code About

Sharing“*Knowledge:
Democratizing Metaresearch==

BEGIN SEARCH

July 13, 2020 Jonathan Fan, Stanford University Stanford ‘ ENGINEERING

Electrical Engineering



http://metanet.stanford.edu

Metanet Contribute Code About

Filter Metagratings ? Metagratings
- e Angle (°) Wavelength Thickness Efficiency Download Optimization Research

Geometry Type: ' nm (nm) Link Method Group

Material Type: ? v 35.0 1000.0 325 0.9527 Download Brute Force Jonathan Fan
Lab

Angle Range: 35.0 1000.0 325 0.9365 Download Brute Force Jonathan Fan
Lab

Wavelength 35.0 1000.0 325 0.9533 Download Brute Force Jonathan Fan
Range: Lab

Thick R . 35.0 1000.0 325 0.9504 Download Brute Force Jonathan Fan
ickness Range: Lab

- 35.0 1000.0 325 0.9440 Download Brute Force Jonathan Fan
Efficiency Range: Lab

o 35.0 1000.0 325 0.9655 Download Brute Force Jonathan Fan
Polarization: - v Lab

Optimization 2  ________ v 35.0 1000.0 325 0.9519 Download Brute Force Jonathan Fan
Method: : Lab

Research Group: ~ =—--emmr v 35.0 1000.0 325 0.9524 Download Brute Force Jonathan Fan
: Lab

35.0 1000.0 325 0.9503 Download Brute Force Jonathan Fan
Lab

DT OE LS 35.0 1000.0 325 0.9528 Download Brute Force Jonathan Fan  ~

Copyright © 2019 Fan Lab, Stanford University Copyright Infringement

July 13, 2020 Jonathan Fan, Stanford University Stanford ‘ ENGINEERING

Electrical Engineering



Metamaterials events and desigh contest

* | am the new chair of the OSA Photonic Metamaterials
technical group, | am planning to have a design contest.

* |f you want to stay in the loop, please sign up:

https://www.osa.org/en-us/get involved/technical groups/

Journals Meetings Explore Industry Get Foundation Living
& Proceedings & Exhibits Membership Programs Involved % Giving History

Home / Getlinvolved / Technical Groups / Optical Interaction Science

Photonic Metamaterials (OP)

Get Involved . )
Photonic Metamaterials Announcements

If you are a member of the Photonic
Metamaterials Technical Group and have ideas for
activities and initiatives to help engage this
community, please shar

This group provides a forum for those working on problems related to
fundamental and applied aspects of waves in random and periodically
nanostructured materials as well as plasmonics. Random media encompasses
transmission through, scattering from, and imaging in turbulent and static
disordered media as well as the statistical nature of wave propagation and its

1 N connection to photon diffusion and localization. Partial coherence, coherent

backscattering, temporal, spectral and spatial correlation within the speckle

pattern, and random lasing are important topics in this area. The focus on periodic media is exciting because
such nano-fabricated structures enable photonic engineering of metamaterials with novel properties.
Examples include left-handed materials, negative index materials and photonic and plasmonic bandgap
materials. These structured materials allow the control of spontaneous emission and lasing. Other areas of
interest include plasmonic nanomaterials, transmission through voids in metallic surfaces, and scattering from
metal dielectric surfaces. Optical enhancements in metallic and dielectric systems and their applications to
photon guiding and sensing are also important.

iversity & Inclusion

View OSA T al Group w s on-demand at
any time or register for any of our upcoming
webinars online. Each webinar is an hour long and
features a technical presentation on a topic selected
by your OSA Technical Groups.

Join Our Online Community
On-Demand Photonic Metamaterials Webinars
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