
Review of numerical optimization techniques 
for meta-device design [Invited] 

SAWYER D. CAMPBELL,1,4 DAVID SELL,2 RONALD P. JENKINS
1, ERIC B. 

WHITING,1 JONATHAN A. FAN,3,5 AND DOUGLAS H. WERNER
1 

1Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802, 
USA 
2Department of Applied Physics, Stanford University, Stanford, California 94305, USA 
3Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA 
4sawyer@psu.edu 
5jonfan@stanford.edu 

Abstract: Optimization techniques have been indispensable for designing high-performance 
meta-devices targeted to a wide range of applications. In fact, today optimization is no longer 
an afterthought and is a fundamental tool for many optical and RF designers. Still, many 
devices presented in recent literature do not take advantage of optimization techniques. This 
paper seeks to address this by presenting both an introduction to and a review of several of 
the most popular techniques currently used for meta-device design. Additionally, emerging 
techniques like topology optimization and multi-objective optimization and their context to 
device design are thoroughly discussed. Moreover, attention is given to future directions in 
meta-device optimization such as surrogate-modeling and deep learning which have the 
potential to disrupt the fields of optical and radio frequency (RF) inverse-design. Finally, 
many design examples from the literature are presented and a flow-chart that provides 
guidance on how best to apply these optimization algorithms to a given problem is provided 
for the reader. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction

The desire to maximize the performance achieved by electromagnetic (EM) devices [1,2] has 
long ago necessitated a need for optimization within the design process. Furthermore, rapid 
advancements in fabrication technologies, physical modeling, and available computing power 
over the past few decades have imbued EM designers with the power to accurately model and 
manufacture devices faster than ever. Moreover, these advances have also enabled modeling 
of more diverse and complicated problems than previously imaginable. It is noteworthy to 
mention that while simulation times may range from a few milliseconds for simple 
geometrical optics ray traces to a few seconds, minutes, hours, or even days for the most 
complicated and electromagnetically large full-wave simulations, all EM devices can benefit 
from optimization of some kind.  

To this end, parameter sweeps are typically the first step employed by designers towards 
optimization. This is usually considered a “hand-tuning” procedure, but sometimes is 
unfortunately the only step taken in the optimization process. While parametric sweeps are 
often useful in establishing parameter bounds for optimization and revealing performance 
trends, they tend to be extremely inefficient if employed to optimize a design; especially, if 
the response surface (i.e., a surface that maps the relationships between input variables and 
output objectives) is hyper-dimensional. This is only exacerbated when multiple goals are 
considered, or non-linear constraints are applied on the input parameters. Essentially, humans 
have limited spatial reasoning capabilities that limit our ability to think hyper-dimensionally.  

Fortunately, computers are very well suited to deal with hyper-dimensional mathematics 
and are the natural choice to solve these complex optimization problems. However, a 
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computer’s ability to find optimum solutions efficiently is limited ultimately by 
dimensionality and complexity of the governing problem and the power of the chosen 
optimization algorithm. Fortunately, many algorithms have been developed over the years for 
various applications. Historically, the first optimizations were based on local techniques, 
often exploiting function gradients to inform the next design chosen for evaluation. 
Algorithms such as Newton’s method [3,4], gradient descent [5], and conjugate gradients [6] 
all use gradient information in different ways to aid in finding local minima. While these 
algorithms are very general purpose, some optimization techniques are highly-associated with 
a specific application. Take, for example, the damped least squares (DLS) algorithm, which 
has been around since the 1960’s [7] and has been very popular for use in lens design for 
many years [2,8]. This algorithm, while still considered a local technique, introduced a 
damping term that aids in convergence near the local minima and can assist in escaping from 
the many local minima that exist in typical lens design problems. However, today’s optical 
engineers are afforded with many more degrees of design freedom than in decades past (e.g., 
high-order aspheric terms, free-form optics, gradient-index (GRIN) materials [9,10], and 
metasurfaces [11,12]) which has necessitated the investigation of more advanced optimization 
algorithms [13–15]. Historically, optimization has long been of interest in the RF and antenna 
communities [1]. Generally, RF and antenna problems contain fewer variables and have 
response surfaces with fewer local minima but tend to be much more computationally 
demanding than lens design problems (e.g.., using full-wave techniques as opposed to ray 
tracing). Therefore, like many optical design problems, RF and antenna problems often start 
with a known good solution and use that as a starting point for optimization.  

However, good starting solutions are not always known, especially in the case of true 
inverse-design problems (i.e., problems in which an optimizer is tasked with finding a design 
that achieves a given set of performance criteria while obeying all design constraints [16]). 
Moreover, due to the computational cost of full-wave evaluations, finite-difference gradient 
calculations are often infeasible which can preclude the use of gradient-based optimization 
techniques. Therefore, for many problems, the ideal optimizer can routinely find the global 
minimum from a multimodal cost function with neither the aid of a good starting point nor 
gradient information and do so in as few full function evaluations as possible. To this end, 
global optimization techniques such as the Genetic Algorithm (GA) [17], Particle Swarm 
Optimization (PSO) [18], Differential Evolution (DE) [19,20], and Covariance Matrix 
Adaptation Evolution Strategy (CMA-ES) [21] have all seen considerable success in the 
optimization of RF and optical design problems. In fact, global optimization techniques have 
become so popular due to their ability to discover new and often unintuitive or even 
unexplainable solutions that competitions are held each year to test and find the most 
powerful, efficient, and robust algorithms [22]. However, local optimization techniques 
should not be discounted. Recently, gradient descent based local techniques have been 
exploited by topology optimization in the inverse design of disruptive nanophotonic devices 
[23]. Furthermore, both local and global optimization techniques have been extended to 
support true multi-objective optimization [24], which is a powerful emerging technique in 
meta-device design. However, sometimes local or global techniques alone are not enough to 
efficiently optimize a given problem. To this end, surrogate modeling and deep learning show 
tremendous potential to revolutionize the future of meta-device design by making 
optimization tractable for time-intensive function evaluations by replacing them with cheaper 
alternatives. 

The organizational structure of this paper is as follows. The second section seeks to assist 
readers who may be inexperienced with the concepts and algorithms discussed in this 
manuscript by providing them a framework for understanding how to pair problem types with 
the appropriate optimization technique. The third section presents an overview of several 
global optimization algorithms as well as a discussion of designs resulting from their 
application. The following sections discuss the emerging techniques of topology optimization 
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and then multi-objective optimization and in meta-device design. The final section introduces 
the reader to surrogate-modeling and deep learning techniques which can be exploited to 
accelerate optimization of computationally-expensive cost functions. Conclusions and closing 
remarks finish the paper and seek to reinforce the important role that optimization can play in 
meta-device design. 

2. Getting started with meta-device optimization 

While the no free lunches theorem states that any two optimization algorithms are essentially 
equivalent when averaged across all possible problems [25], this should not be interpreted as 
implying that the choice of algorithm is unimportant for a given optimization problem. In 
fact, we typically only encounter a finite number of problem types in meta-device design and 
can absolutely select preferential algorithms for the given problem type. For those 
inexperienced with advanced meta-device optimization, the hardest question to answer may 
be what optimization algorithm is best suited for a particular problem. The answer to that 
question depends on factors such as the input space topology, number of input parameters, 
number of objectives, and computational cost per function evaluation (i.e., full-wave 
simulation). Moreover, except in a few specific cases, there is no single optimization 
algorithm that is perfectly suited for a particular problem or numerical method (e.g., the finite 
element method (FEM) or finite-difference time domain (FDTD)). Still, it is possible to 
greatly narrow down the optimization strategy (i.e., local or global) and specific algorithm 
(e.g., GA or CMA-ES) recommended for a particular problem by asking a series of additional 
questions.  

Figure 1 presents a meta-device optimization flowchart, which seeks to assist the reader in 
determining the best optimization strategy for their problem by answering these questions. 
Starting at the top of the chart, one flows down to the first question: Is the input space 
discrete? A discrete input space implies that there is a finite number of potential solutions to 
search from to find the optimal solution. This is known as a combinatorial optimization 
problem and while it is theoretically possible to evaluate all possible combinations to find the 
optimal design, this can often be intractable due to the number of parameter combinations and 
function evaluation cost. Fortunately, global optimizers like the GA (see Section 3) can 
efficiently find high performance designs from large solution spaces. However, in 
metamaterial design, the GA can often produce designs that have non-contiguous inclusions. 
Therefore, if a contiguous structure is needed (e.g., a meander-line antenna), the Ant Colony 
Optimization (ACO) algorithm or Multi-Objective Lazy Ant Colony Optimization 
(MOLACO) algorithm (see Section 3) is a better choice.  

For problems with continuous input space representations (even if the parameters 
themselves are bound with constraints), the choice of optimizer is more complicated. If there 
exists a good initial solution, it is usually the best strategy to apply a local optimization 
technique. From there, if the problem can be cast as a finite element problem (i.e., one in 
which gradient information is used to directly modify the finite-element representation of the 
problem) then it is a prime candidate for topology optimization (see Section 4.1). Otherwise, 
there exist a number of gradient-based algorithms that can be used for optimization such as 
DLS, Newton’s method [4], and multiobjective Gradient Descent algorithm (MDGA) [26]. If 
a good starting solution does not exist, then global optimization techniques are usually the 
best choice (see Section 3). Flowing down from the global optimization bubble, one must 
determine how much time is acceptable for optimization. If the time required for a single 
function evaluation is short enough that evaluating hundreds or thousands of designs is within 
the acceptable limit determined by the designer, then a range of global optimizers may be 
directly applied to solve the problem. However, if the function evaluation time is large 
enough to prohibit direct optimization, then other techniques are needed.  

Flowing down the “Prohibitive” segment, one must evaluate if optimization with design 
tolerance (i.e., robustness) is required. If so, the Multi-Objective with TOLerance (MOTOL) 
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due to the presence of disconnected pixels in the solution. On the other hand, ACO maps the 
optimal “trail” found by the artificial “ants” in the graph topology to a contiguous structure. 
For this reason and more, ACO has seen tremendous success in electromagnetic device 
design, especially in the generation of meander-line antennas [44] (see Fig. 3(a) bottom). 
Recently, Zhu extended the ACO algorithm to include “lazy” ants [43,57] which greatly 
improved design diversity and has successfully been used to generate high performance 
frequency-selective-surface (FSS) structures [43,58]. Furthermore, by leveraging the third 
dimension (i.e., axial) these structure possess wide field of view (FOV) performance [58] 
which makes them an attractive candidate for metasurface design in the optical regime [59] 
(see Fig. 3(a) top). 

While ACO and the GA are well suited to combinatorial (i.e., discrete) optimization 
problems, most optical and EM design problems are continuous functions and, thus require 
other optimization algorithms. The particle swarm optimization (PSO) was introduced in the 
mid-1990s [18] and has seen extensive application in electromagnetic device optimization 
[60–63]. PSO is another swarm-intelligence optimization algorithm that was originally 
constructed to model social behavior and inspired by the movements observed in flocks of 
birds and schools of fish. When PSO was introduced to the electromagnetics community, it 
possessed a number of advantages over the GA. Firstly, PSO is a real-valued algorithm and 
operates with vectors of real numbers instead of binary values as with the GA (later versions 
of the GA introduced real-valued parameters [64]). Secondly, population members tend to 
operate more independently and cooperatively. This can be thought of as individual members 
exploring different parts of the solution space simultaneously and communicating to other 
members of the “swarm” when they have found a good solution. In fact, PSO was found to 
outperform the GA when designing negative index metamaterials [65]. Additionally, PSO has 
seen application to optical meta-device optimization. In [45], PSO was employed to optimize 
the geometrical parameters and spacing of nanoparticle-based Yagi-Uda antennas (see Fig. 
3(b)). PSO has also successfully been used to optimize nanohole-array based metasurfaces for 
beam steering applications [46] (see Fig. 3(c)). Interestingly, PSO has been found to be a 
special case of the more general wind-driven optimization (WDO) algorithm, which was later 
introduced in [66]. 

While global optimizers like the GA and PSO have successfully been applied to a wide 
range of design problems in the RF and optical regimes, they typically are sensitive to internal 
parameters that often require tuning on a per-problem basis. Moreover, it is not always clear 
how best to tune these parameters for a given problem and may require adaptive tuning 
during optimization to maximize the performance of the algorithm. In fact, many studies have 
investigated optimal control parameter tuning in evolutionary algorithms [67–70]. On the 
other hand, the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [21] requires 
very few user-defined control parameters; typically only the population size needs to be 
chosen prior to beginning an optimization. This self-adaptive nature and power of the 
underlying algorithm itself has made CMA-ES a very attractive choice for meta-device 
optimization [71]. Furthermore, it has been shown through several comparisons that CMA-ES 
is a more capable optimization algorithm for the problems typically encountered in 
electromagnetics [72], allowing for the design of more complex and high performance 
devices due to its ability to optimize high dimensional problems in less time than other 
algorithms. In fact, in [47] CMA-ES was found to significantly outperform the GA in terms 
of convergence speed and quality of solution found (see Fig. 3(d) top) when applied to the 
optimization of broadband polarization-converting metasurfaces. Moreover, the optimal 
structure found by CMA-ES is simpler and potentially less prone to fabrication tolerances 
than the pixelated design found by the GA. CMA-ES, in conjunction with an efficient port-
reduction method, has been applied to electromagnetic band-gap (EBG) structure synthesis 
[48] (see Fig. 3(e)). CMA-ES has also been applied to the optimization of more traditional 
optical devices including triangular fiber Bragg gratings [73] and programmable optical filters 
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for waveform sculpting [74]. CMA-ES has proven to be a very powerful technique for 
homogeneous [75] and GRIN lens optimization [76,77]. In [49], CMA-ES was used to 
optimize a GRIN lens which converted a Gaussian laser beam to a top-hat profile while 
maintaining collimation (see Fig. 3(f)). This design resulted in massive SWaP-reduction over 
traditional homogeneous lens-based beam shapers which require multiple elements to achieve 
the same behavior. Additionally, CMA-ES has also been used in non-electromagnetic meta-
device optimization with examples including acoustic metamaterials [78] and thermal cloaks 
[79]. 

Global optimization techniques are the dominant approach to meta-device optimization 
today and we expect their use to increase, especially in optical metasurface and nanoantenna 
applications. Moreover, there is tremendous research activity targeted at developing new and 
more powerful GO algorithms which will continue to expand their applicability to meta-
device design. Nevertheless, some of the most exciting nanophotonic devices today are 
optimized using local optimization techniques and a design methodology known as topology 
optimization. While global optimization techniques are very general, they suffer from the 
curse of dimensionality (i.e., the number of required function evaluations for convergence 
increases with the dimensionality of the problem, usually hyper-linearly). Topology 
optimization overcomes this limitation due to its unique cost function construction and 
although it is suited to a very specific class of problems, it has seen tremendous success in 
meta-device optimization. 

4. Emerging optimization techniques in meta-device design 

4.1 Topology optimization 

Topology optimization refers to the idea of optimizing a two- or three-dimensional system 
comprising an array of pixels or voxels (hereafter called elements), each which contains a 
discrete or continuous parameter requiring adjustment. Compared to many of the other 
approaches discussed in this paper, the number of simulations required for topology 
optimization does not increase as the number of elements in the system grows. As such, 
designs created using this method can be high-resolution, curvilinear structures containing 
thousands to millions of elements. 

Topology optimization can be mathematically described as the maximizing of a target 
merit function using gradient descent. In particular, the gradients of the merit function with 
respect to the design variables provide a guide for iteratively modifying these design 
variables, in a manner that improves the merit function. Our design variable for a binary 
dielectric meta-device is the spatially dependent dielectric constant within the system, defined 
as: 

 ( )( ) ( )high low lowr a r= − + 
     (1) 

r
 represents any location within the design domain, a ∈ [0,1], and the dielectric constants ϵlow 
and ϵhigh represent the two materials making up the final device. The ability for the design 
variable to take grayscale values between these dielectric constant values is important in most 
implementations of topology optimization, as the method requires the iterative modifications 
to the design variable to be perturbative. Perturbative modifications can similarly be achieved 
by restricting the dielectric constant to binary values, and optimizing along the boundary of 
the geometry, only changing a small volume of material in each iteration. This is often useful 
as a refining step after greyscale optimization is complete. 

The gradient of the merit function for each element can be computed efficiently using the 
adjoint method [23]. There exist a variety of adjoint-based topology optimization 
implementations. Many of these implementations make use of accurate Maxwell equation 
simulations to perform a set of forward and adjoint simulations per iteration [23], [80], [81]. 
Consider, as an example, the problem where we want to use plane wave illumination to 
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and even enabling new functionality not possible with single layer patterns. In the case of 
multi-layer dielectric composites based on device planarization, multi-functional deflectors 
(Fig. 5(a)) and field-flatness corrected metalenses (Fig. 5(b)) have been theoretically 
proposed. Broadband light splitters operating in the scalar diffractive optics regime, based on 
varying and optimizing height topology with a low contrast polymer, have been designed and 
experimentally fabricated (Fig. 5(c)). Designs based on height topology variation have the 
potential for low cost, large area implementation based on imprint lithography. Diffractive 
optical components have also been proposed using 3D printing at length scales ranging from 
the nanoscale (Fig. 5(d)) to the microscale (Fig. 5(e)). We expect the range and capabilities of 
topology-optimized devices to continue to expand, as state-of-the-art fabrication methods 
continue to evolve and get better at producing 3D composite materials with high spatial 
resolution and greater dielectric contrast. 

4.2 Multi-objective optimization 

Although SOO and topology optimization are sufficient tools for many optimization 
problems, there are some classes of problems which cannot be satisfactorily solved by a 
single objective optimizer. In the case of a design problem with multiple competing goals, 
captured as multiple objective functions, it is unclear how these goals ought to be related to 
one another to produce an optimal solution. Furthermore, optimality in this context is no 
longer a straight-forward concept, as a host of different designs may fall on the tradeoff 
between the competing goals. One approach that is commonly employed is to combine 
multiple goals into a composite objective via a weighted sum which is then optimized with a 
traditional SOO. Unfortunately, this approach suffers from a few problems. First, the optimal 
choice of coefficients that the designer should use when creating the composite function is 
usually not known a priori. Additionally, and more critically, this approach will only yield a 
single solution despite there being a host of potential solutions that satisfy the best-possible 
tradeoff between the goals. 

In general, the tradeoff between the objectives measuring a set of designs is best 
understood by the concept of a Pareto front (Fig. 6(a)). This concept expands the notion of 
optimality from singling out the best of all designs to delivering a set of designs that achieve 
the best possible tradeoff between objectives [91]. More specifically, the Pareto front of a 
design problem is the set of all designs for which an improvement in one objective 
necessitates a deterioration in some other objective. Because the “Pareto optimality” of a 
point with respect to other points ought not to favor one objective over others, the concept of 
dominance was introduced [92]. For a pair of points x1 and x2, x1 is said to dominate x2 if x1 is 
better than x2 in all considered objective measures. Using this concept, the Pareto front can be 
expressed formally as the set of feasible non-dominated designs in a given design problem. 
Interestingly, it has been shown that, depending on the structure of the Pareto front, there are 
some portions of it that cannot be found by using the weighted sum technique [92]. Thus, true 
multi-objective optimization (MOO) must use a variety of other approaches to build a set of 
solutions which approximate the true Pareto front for a given problem. This both frees the 
engineer of the responsibility of prioritizing the objective functions ahead of time and can aid 
in understanding the physics which underly the tradeoffs between the problem goals. With the 
optimization completed, a common approach is to select a knee-point on the Pareto front 
(e.g., the closest point to the origin) which represents a compromise between the various 
objectives. More generally, now that a tradeoff is understood between the objectives, the 
engineer has an opportunity to apply any preexisting prioritization of the objectives which 
may be specific to their problem without fear of inadvertently missing solutions that are better 
for their situation but would not be found using SOO. 

Because MOO inherently produces a set of solutions rather than a single solution, 
algorithm designers have had great success in adapting population-based evolutionary 
algorithms to operate using the dominance relationship. Thus, there are a wide array of multi-
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parameterization of dielectric nanoantenna scatterers in combination with a MOEA to 
characterize the tradeoff between the reflection at two different frequencies [97] (see Fig. 
6(b)). Similarly, Nagar et al. used a MOEA called BORG [101] to simultaneously optimize 
the directivity, front to back ratio (FTBR), and scattering efficiency of both multilayer core-
shell particles and Yagi-Uda nanoloop antennas [98] (see Fig. 6(d)). MOO has also been 
applied to photonic scatterer and waveguide design [99,102] (see Fig. 6(e)). Finally, Hassan 
et al. designed a nanoantenna with radiation modes dependent on the excitation port using a 
specialized MOPSO [103]. Their optimization minimizes losses, maximizes radiation 
efficiency and maximizes discrimination between radiation patterns. 

The problems of today demand high performance in a multitude of competing areas, 
especially when balancing electromagnetic performance with SWaP-C and manufacturability 
considerations. To this end, multi-objective optimization is perfectly suited to capture these 
and other arbitrary competing design objective tradeoffs. We expect MOO to be critical and 
its use to increase in meta-device design as more researchers become aware of its advantages. 

5. Future directions in meta-device optimization 

5.1 Surrogate modeling 

The practicality of any optimization technique is primarily dependent on the computational 
cost of the problem’s function evaluations. Many of the optimization techniques covered thus 
far are based on solving Maxwell’s equations in an iterative manner. While effective, they 
require considerable computational resources and time. For instance, to accommodate the 
complex physics required to evaluate Hassan’s nanoantenna referred to above, the authors 
elected to perform full-wave simulations which accurately measure the objective functions of 
each design. However, as we know, full wave simulations can become prohibitively 
expensive for complex structures. To mitigate this issue, the authors of this design chose to 
integrate a powerful concept called surrogate modelling into the optimization procedure. 

Any high-quality meta-device solution must at some point be validated using trusted and 
robust simulation techniques. Although many designs are intentionally parameterized to avoid 
costly full-wave simulations, in some cases these expensive evaluations cannot be avoided. 
Since high-fidelity systems grow increasingly computationally expensive to evaluate in a full-
wave solver, any intentions of optimizing the system may become impractical—in some cases 
to the point of intractability. For these kinds of problems, optimizers which make every effort 
to lower the expected number of high-fidelity (a.k.a. full) evaluations required to find an 
optimal solution are necessary. Unfortunately, many GO and MOO optimizers have no such 
constraints, and so may require too many full evaluations to be tractable on their own. 
Surrogate modeling (SM) techniques, on the other hand, strive to alleviate this problem by 
replacing full evaluations with trained models that are significantly faster to evaluate. These 
surrogate models can take many forms and fulfill different functions to lower the number of 
necessary full evaluations. Analytical models are one approach to accelerating optimization 
through surrogate modeling. For example, in the case of lens design, the lens maker’s 
equation may be used as a surrogate model for constraining and seeding the optimization of 
optical systems [104]. Equivalent circuit models used to describe antenna and metamaterial 
devices are another analytical surrogate model example and can be used to accelerate the 
optimization process of practical structures. For example, in [105], an RF circular split ring 
resonator metasurface was captured with a full-wave model, but the optimization work was 
offloaded primarily to a circuit equivalent allowing for significant time savings. Duan et al. 
[106] and Kim et al. [107] both similarly applied a circuit model to the optimization of 
nanoantenna devices (see Fig. 7(a) and Fig. 7(b), respectively). Because predefined analytical 
models are typically based directly on the physics of the ground truth high-fidelity model, 
they have the potential to offer the greatest speedup while remaining intuitive to understand 
and maintaining relatively high accuracy. 
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tradeoffs between realized gain and the estimated design tolerance (reprinted (adapted) with 
permission from [27], IEEE). 

Surrogate modeling can be further integrated into the optimization procedure, allowing for 
some truly remarkable speedups. In [116], the training of a Gaussian process model was 
interleaved with full-wave simulations of nano-particles of different morphologies to directly 
coordinate model training and prediction (see Fig. 7(c)). Surrogate models were integrated 
directly into the optimization algorithm to efficiently design photonic circuitry in [117] and 
[118]. Co-Kriging is another surrogate modeling approach which uses multiple models of 
varying fidelity to reduce the number of full evaluations used [119]. This technique was 
applied by Koziel et al. to an antenna design problem by correlating full-wave simulations of 
different mesh fidelities together for lower optimization cost [120]. There also exist a number 
of emerging surrogate-assisted techniques such as inverse surrogate modeling [121], response 
feature based optimization [122,123], and adaptive response scaling [124] that have seen 
successful application at RF frequencies and have the potential to make an impact in optical 
meta-device optimization. 

Surrogate modeling can also be used for applications beyond optimization time speedups. 
Easum et al. introduced MOTOL for multi-objective optimization with tolerance studies 
uniquely integrated through the use of surrogate models (see Fig. 7(f)) [27]. In addition to 
enabling per-design measurement of design tolerance during optimization, MOTOL also 
simultaneously trains several competing surrogate models and dynamically selects the best 
one for the problem. MOTOL then explores the response surface using a Monte Carlo 
approach to estimate the design’s tolerance hypervolume [27]. Analytical techniques such as 
Interval Analysis (IA) have also been used for tolerance estimation [125–127] in RF device 
optimization. Finally, since tolerance is an explicit objective, one can observe the tradeoffs 
between design robustness and traditional performance objectives such as gain, bandwidth, 
and field-of-view. 

Finally, the design problems of today will almost certainly become more difficult as 
engineers seek to incorporate multiphysics and multiscale aspects into the inverse-design 
process. Undoubtedly, this will challenge the available computational resources, and so 
surrogate modeling is well positioned to play a critical role in realizing disruptive meta-
devices in the future. 

5.2 Deep learning 

An emerging class of surrogate modeling techniques involve the use of deep neural networks 
(DNN). As with other learn-by-example techniques, the general idea with DNN’s is to expend 
computational time and resources upfront, for the generation of training data sets consisting 
of device geometries and their associated optical responses. These data can be used to train a 
deep neural network, using classical supervised learning methods, to ‘learn’ the nonlinear 
relationships between geometry and optical response. The power of deep neural networks 
comes from their multi-layered composition which allows them to learn the relationships 
between data with multiple levels of abstraction. Once trained, a deep neural network can 
efficiently produce the geometry of a device when presented with a desired optical response. 
Deep learning techniques based on DNNs have led to tremendous advancements in image 
processing, object detection, and speech recognition [128] and have the potential for 
tremendous disruption in the inverse design of RF and optical meta-devices. 

Deep neural networks that use device geometries and optical responses as input and 
output parameters are able to perform inverse design with nanophotonic systems. In a recent 
demonstration, deep networks were used to relate the geometry of subwavelength-scale 
concentric dielectric shells and their scattering cross sections (see Fig. 8(a)) [129]. The 
thicknesses of the differing shells served as discrete parameters describing the scatterer 
geometries, while sampled points in the scattering spectra served as discrete parameters 
describing the optical response. These input and output parameters map onto a discrete set of 
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of two split rings (reprinted (adapted) with permission from [132]. Copyright (2018) American 
Chemical Society). 

6. Conclusions 

Many algorithms and techniques exist for the inverse design of meta-devices and due to the 
ever-increasing levels of computational power, advancements in fabrication techniques, and 
interesting materials available to the designer there will only be an ever-increasing need for 
optimization to realize the highest performance designs. Whether it be a local, global, single- 
or multi-objective algorithm, optimization can benefit all optical, RF, and nanophotonic 
design problems. However, readers should not conclude that optimization can wholly replace 
the need for experienced designers. Rather, optimization should be thought of as a tool that 
designers can use to maximize the performance of their device. Moreover, experienced 
designers can use their prior knowledge and intuition to significantly reduce the 
computational costs of optimization by applying intelligent constraints and supplying 
exceptional starting points. Finally, the authors strongly advocate that all readers consider 
applying some level of optimization to their problems and hope that the discussions provided 
in this manuscript are helpful to experienced and novice designers alike. 
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