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ABSTRACT: Advances in modern manufacturing have enabled the
multiscalar patterning of dielectric media with nearly arbitrary layouts,
presenting unique opportunities to revolutionize the design and
fabrication pipeline for photonic technologies. In this Perspective, we
discuss how algorithms based on classical optimization and deep
learning are establishing a new conceptual framework for freeform
optical engineering. These tools can specify suitable design
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parameters for a desired objective, automate the high-speed

optimization of freeform devices, and augment manufacturing

processes to mitigate challenges set by freeform fabrication. A central feature of many of these algorithms is their utilization of
data and physics to model and exploit high-dimensional relationships between geometric structure and electromagnetic response
within the constraints of Maxwell’s equations. We anticipate that these algorithm-driven methods will streamline optical systems
design at the physical limits of structured media and become standard academic and industry tools for scientists and engineers.
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he field of optical engineering is based on understanding

and exploiting the relationship between geometric shape
and electromagnetic response to enable the experimental
implementation of optical systems. The concepts span a
multitude of length scales, from much larger than the
wavelength where waves can be treated as rays to much less
than the wavelength where light—matter interactions require a
full vectorial wave treatment. Traditionally, the relationship
between geometry and response has been principally built from
insights based on physical laws, where a combination of
simplifications, approximations, and constraints to physical
systems have led to intuitive models and design strategies. A
simple example is the lensmaker’s equation, which was
developed for designing imaging systems and for which
spherical surfaces were considered due to their utility in light
focusing and practical constraints posed by manufacturing.
Analogous concepts at much smaller length scales have been
established for the customized manipulation of electro-
magnetic waves in integrated and free space photonics,
where relatively simple geometric shapes described by a
handful of free parameters serve as the typical basis for device
design.

Recent developments in high-precision manufacturing have
pushed the experimental patterning of geometric features to
new limits, presenting opportunities to redefine the optical
engineering process. Advanced machining can now be used to
fabricate refractive optical components with nearly arbitrary
surface profiles,"” lithography can support the routine
patterning of thin film materials into nanoscale freeform
shapes,”™> and additive manufacturing can produce nearly
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arbitrary three-dimensional structures with feature sizes
spanning the macro- to submicrometer scale.”” These
fabrication methods present an immense geometric feature
space for optical design where, in principle, every voxel in the
patterning process is a free design parameter. Concepts that
take full advantage of this feature space can push system
capabilities to new levels and meet the challenges posed by the
next generation of quantum, communication, sensing, imaging,
and display systems, which include the following: (1)
operation in conditions that involve low photon counts,
intolerance to stray light, or limited energy footprints, thereby
requiring light manipulation with exceptionally high efficien-
cies,"""Y (2) multiplexing of optical responses that are a
function of incident angle, wavelength, and polarization,u_13
(3) ultracompact form factors that maximize device density in
a system,”' "> and (4) unusual curvilinear or freeform layouts
that enhance optical system parameters such as field of
view. 1617

In this Perspective, we discuss emergent directions in optical
engineering that leverage new advances in algorithms to design
and fabricate freeform optical systems with unprecedented
capabilities. This new breed of optical engineering has been
made possible due to the convergence of multiple develop-
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Figure 1. Overview of the algorithm-driven pipeline for optical engineering. Optical design objective is cast as an optimization problem, and
performance bounds calculations ensure the presence of high-performing devices in the design space. Iterative freeform optimization algorithms
coupled with high-speed fullwave electromagnetic solvers are then used to identify candidate devices. Fabrication processes based on lithography or
additive manufacturing are augmented with artificial intelligence algorithms to reliably produce experimental devices. Material used for this figure is
adapted with permission from refs 18, 19, 20, and 5. Copyright 2019, 2020, 2022, and 2018 American Chemical Society, The Optical Society, arXiv
https://creativecommons.org/licenses/by/4.0/, and American Chemical Society.

ments over the last two decades, including the explosive
growth of machine learning, advances in optimization theory,
proliferation of new computing hardware, and continued
development and refinement of experimental fabrication tools.
Optimization methods are at the heart of this algorithm-driven
pedagogy, where they aim to capitalize on the full geometric
feature space made accessible by current state-of-the-art
fabrication methods. However, optimization methods are
only part of this growing ecosystem of algorithms, as
meaningful optical design requires full accounting of
experimental manufacturing capabilities and the physical limits
of light—matter interactions with structured media.

Our framework for algorithm-driven optical engineering,
with the goal of designing and prototyping high-performing
experimental devices in an accelerated and automated manner,
is outlined in Figure 1. Performance bound calculations guide
the selection of the device footprint and material parameters to
ensure that the geometric feature space can support designs
with a desired performance metric. Iterative freeform
optimization algorithms, operating within constraints set by
experimental fabrication, effectively search for optima within
the full geometric feature space, and they are augmented by
ultrafast electromagnetic solvers that can dramatically accel-
erate the computing of Maxwell’s equations. To reliably
fabricate these devices, machine-learning algorithms are used
to handle and correct manufacturing errors, which are
particularly nontrivial in freeform designs. In this Perspective,
we will focus our discussion on wavelength- and subwave-
length-scale photonic devices, though the presented concepts
apply to optical systems at all length scales, and we note the
exciting algorithmic developments in ray-based optics emerg-
ing from the computer graphics and computer vision
communities. We anticipate that these approaches to optical
engineering will empower practitioners to move away from
asking how to realize an optical system and focus on what
system functionality is useful for an application.
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B PERFORMANCE BOUNDS

Prior to performing the detailed optimization of an optical
device, the first step is specifying the scope of its geometric
feature space. This scope takes different forms depending on
the physical system and includes the choice of the areal
footprint in a chip-based device, number of layers in a
multilayer metasurface, and range of refractive index values
used in any device. Ideally, the feature space is specified to be
sufficiently large as to ensure the presence of high-performing
devices but not so large that it adds unnecessary device size,
weight, or fabrication steps. To this end, performance bounds
calculations have been developed that specify the physical
limits of the best devices within a geometric feature space,
thereby providing direct insights on the scope of a feature
space without directly needing to identify the devices
themselves. They are particularly important for electro-
magnetics problems because the design landscapes are high
dimensional and nonconvex, meaning there are many local
optima of varying quality and it is very difficult to find the
global optimum.

Bounds calculation methods can be roughly classified into
two categories. The first is physical bounds, which are derived
from fundamental physical laws and are independent of a
particular device geometry or domain of optimization. These
bounds are often in the form of concise analytical expressions
and typically provide physical intuition as to their origins. In an
early example, it was shown that the near-field heat transfer
rate between two closely spaced bodies, independent of shape,
is bounded by IyI*/Imy, where y is the susceptibility of each
body (Figure 2a).”' These bounds were derived from
conservation of energy and reciprocity laws, and they have
successfully served to simplify material selection for practical
near-field heat transfer systems. In another example, material-
dependent upper bounds to the extinction cross section of
nanoparticles with fixed volume were derived from restrictive
sum rules involving the quasistatic eigenmodes of the particles
(Figure 2b).”* More recently, a framework based on local
conservation laws arising from the complex Poynting theorem
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Figure 2. Performance bound calculations for photonic systems. (a—c) Tight physical bounds, derived from physical laws, specify performance
limits for (a) near-field radiative transfer between two objects, (b) extinction cross section of metal nanoparticles, and (c) achromatic metalens
bandwidth. (d—f) Computational bounds are calculated using principles in convex optimization. (d) Lagrange dual functions can provide tight
bounds to nonconvex physical design spaces. (e) Solution of a Lagrange dual function can suggest a good starting point for gradient-based
optimization, as shown in the case of a Helmholtz resonator. (f) Lagrange dual methods provide computational bounds for absorption in a silicon
carbide metasurface. (a) Adapted with permission from ref 21. Copyright 2015 American Physical Society. (b) Adapted with permission from ref
22. Copyright 2014 American Physical Society. (c) Adapted with permission from ref 23. Copyright 2020 The Optical Society. (e) Adapted with
permission from ref 24. Copyright 2019 American Chemical Society. (f) Adapted with permission from ref 25. Copyright 2020 The Optical

Society.

was developed to compute bounds for various electromagnetic
scattering phenomena, including the minimum size of a
scatterer required to support a desired S matrix response,
maximal bandwidth-averaged extinction from a scatterer given
a bandwidth, and absorption bounds for a scatterer given its
complex dielectric constant and dimension.*®

Approximations and simplifications to physical laws can also
be used to derive physical bounds. In the calculation of the
upper bounds for light trapping in a nanophotonic structure,
light trapping was modeled as the coupling of an incident plane
wave into guided modes and bounds to the trapping
enhancement factor were computed using statistical couple-
mode theory.”” Bandwidth limits of achromatic metalenses
were derived by modeling thin broadband metalenses as a set
of local delay lines, which use group delay to compensate for
the time difference between light traveling from the metalens
center to the focal spot and light traveling from the metalens
edge to the focal spot (Figure 2c).”” With this approximation, a
bandwidth limit can be computed that depends on the
metalens numerical aperture, delay line length, and metasur-
face dielectric constant.

The second category of bounds calculations is computa-
tional bounds, which frame a specific optical design problem as
a physically constrained optimization problem and uses
Lagrange duality to mathematically calculate the bounds.”***
While the physical design space f(x) is nonconvex and the
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search for the optimal device x™* is intractable, the Lagrange
dual-function g(v) is convex and its optimum v* can be readily
solved to provide the bound (Figure 2d).>* As these bounds
are derived from optimization theory, they are more problem
specific and are often tighter but tend to lack physical intuition.
To be more specific on the formalism, an optical design
problem can be generally expressed as a constrained
optimization problem, for example

min I|E — E|i3
€,E
s.t. V’E + GM(UZE =0 (1)

with design variable ¢, field E, and target field E: Our objective
is to optimize the dielectric constant € according to the desired
target field E. The physical constraint is the wave equation
derived from Maxwell’s equation. To incorporate this
constraint into the optimization objective, the Lagrangian is
defined as the objective function augmented with a weighted
constraint function

L(e, E, v) = ||E — E|} 4+ v"(V’E + euw’E) (2)

The weight variable v is referred to as the Lagrange multiplier
or dual variable. The minimum value of L(¢,Ev), upon
optimization over the design variable € and field E, will vary as
a function of v.
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Figure 3. Freeform optimization of photonic devices. (a) Examples of freeform-optimized devices, including a chip-based wavelength
demultiplexer, free space metagrating, and chip-based photonic crystal. (b) Schematic of a local freeform optimizer based on the adjoint variables
method in which a dielectric distribution is iteratively updated using gradients computed from forward and adjoint simulations. FoM increases over
the course of optimization, and constraints, such as the enforcement of binary dielectric values, are gradually incorporated. (c) Schematic of the
global freeform optimization algorithm GLOnet, which frames the population-based search for the global optimum as the training of a generative
deep network. Over the course of optimization, the figures of merit featured in the generated device distributions increase and converge to high
values. (a) Adapted with permission from refs 31, 11, and 32. Copyright 2018, 2017, and 2020 American Chemical Society, Wiley Online Library,
and American Chemical Society. (b) Adapted with permission from ref 19. Copyright 2020 The Optical Society. (c) Adapted with permission from

ref 18. Copyright 2019 American Chemical Society.

The Lagrange dual function is defined as the infimum (ie.,
greatest lower bound) of L(, E, v) as a function of v

g0) = inf L(e, E, ) (3)

g(v) is a concave function even if the original problem is
nonconvex. In addition, by definition

inf

, . L(eEv)
V*E+euw E=0

g(w) =infL(e, E, v) <
¢,E

inf|[E - £

V2E+s;m)2E:0

(4)

and it therefore yields a lower bound on the optimal value of
the original problem. Nontrivial bounds can therefore be
calculated by solving the following convex optimization
problem

min_|[E — E|j

maxg(v) < | min
v VE+euw E=0

©)
As a convex problem, optimization of the Lagrange dual
function is tractable and straightforward using convex
optimization algorithms. These computational bounds have
been applied to a variety of wave-based systems, including
Helmholtz resonators (Figure 2f ** and metasurface absorbers
(Figure 2e).° We additionally note that the dual-function
optimum v* can be used to find a good starting point €, = arg
min, L(¢, E, v*) for optimization in the phzrsical design space,
as demonstrated for Helmholtz resonators.”*
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Research into electromagnetics performance bounds calcu-
lations is relatively nascent, and to date, nontrivial bounds have
been derived for only a handful of photonic systems. These
formalisms have nonetheless proven impactful in cases where
the calculated bounds are tight. For example, bandwidth
bounds for local achromatic metasurfaces have been important
in discerning the physical limitations of broadband metalenses
and their potential application in full color imaging systems.
Looking ahead, there are many open research opportunities to
develop new methods for computing tight bounds as these
formalisms are problem specific and require detailed tailoring
to ensure that the bounds are nontrivial. In the example of
achromatic metasurfaces, new bounds formalisms are required
for emergent classes of nonlocal volumetric devices, which
have much greater capacity for large-aperture broadband
operation and cannot be described with the local delay line
approximation. A particular long-term challenge for all bounds
formalisms involves the incorporation of manufacturing
constraints, such as minimum feature size and sensitivity to
random imperfections, which is critical when using these
algorithms to guide the design of devices for experimental
implementation.

B FREEFORM OPTIMIZATION ALGORITHMS

Optical design is an optimization task in which the goal is to
maximize a figure of merit (FoM) describing the desired
optical response. It is particularly challenging because the
feature space for photonics is large and nonconvex, and it can
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be difficult to know where in the landscape to search. For
simple low-dimensional problems, solutions can be identified
through the brute force sweeping of candidate geometries or
be optimized using one of several heuristic gradient-free
optimization methods.””*’ However, for systems where the
dimensionality of the feature space is large and the FoM is
complex and multiobjective, conventional approaches can
become ineffective and computationally intractable. Fortu-
nately for electromagnetics systems, computationally efficient
methods have been developed to calculate gradients that
specify how device parameters can be perturbed in a manner
that improves the FoM, and these gradients can be used in an
optimizer to efficiently search within a feature space. While
gradient-based optimization cannot guarantee the discovery of
exceptional devices in a nonconvex landscape, its ability to
identify high-performing freeform devices with relatively few
simulations makes them a clear solution for freeform device
design.

There are two primary ways to calculate gradients for
photonic systems. The most widely used method is the adjoint
variables method,'***** in which gradients for every geometric
feature in a device are calculated with a computational cost
that is independent of the number of features. The concept was
introduced to photonics by Ole Sigmund35’36 and Eli
Yablonovitch®” in the early 2000s and has since been applied
to a wide range of free space and chip-based photonic systems
(Figure 3a)."*"** To conceptualize the adjoint variables
method, we can frame the effect of a geometric feature
perturbation on the FoM as the excitation of polarization
currents at the feature position and the measurement of the
electric field at the FoM point of evaluation (i.e. spatial
position in the near or far field corresponding to the FoM
objective). With Lorentz reciprocity, this problem is equivalent
to placing a current at the FoM point of evaluation and
measuring the electric field at the feature position. In this so-
called adjoint simulation, the electric field can be evaluated at
all locations and be used to help compute gradients for all
features in the system. The second method for calculating
gradients is to use an electromagnetic simulator that can
perform autodifferentiation.”® The idea is that the relationship
between device layout and electromagnetic fields can be
described by an analytical and differentiable function, and
changes in the field distribution can link with changes in the
device layout by use of the chain rule. With autodifferentiation
serving as a tool for neural network training in machine
learning, there now are accessible and standardized software
packages to adapting algorithms, including Maxwell solvers, to
this framework.

Gradient calculations can be readily incorporated into
gradient descent algorithms to perform local freeform
optimization (Figure 3b).”'”*” An initial device layout with
either randomly initialized geometric features or specified
features based on an educated guess is used as a starting
point,** and gradient calculations are used to iteratively perturb
the layout in a manner that improves the FoM. Various
modifications can be made to the algorithm to further shape
the optimization process. Adaptive-learning rates can ensure
that the gradient magnitudes are suitable and effective
throughout the iterative optimization process.*”** In addition,
the inclusion of momentum in the gradient descent algorithm
can help the optimization trajectory escape reAgions of the
feature space containing vanishing gradients.””** While local
gradient methods have benefits of straightforward implemen-

2864

tation, they are ultimately local optimizers that search within
limited regions of the feature space near the initial device
layout.

Gradients can also be used to perform population-based
searches for the globally optimal device in a design landscape.
In a recent development, global topology optimization
networks (GLOnet) was proposed in which the search for
the global optimum is mediated by the training of a generative
neural network.'®*>*® A schematic of the algorithm is shown
in Figure 3c. First, the network is initialized so that the input
latent random variable maps to all possible outputted photonic
devices. Upon sampling of the outputted device distribution,
the device figures of merit and local gradients are calculated
using a Maxwell solver, inputted into a special loss function,
and backpropagated into the network. In performing this
procedure in an iterative manner, the outputted device
distribution gets pushed toward the global optimum during
GLOnet training, and it ultimately collapses ideally at the
global optimum upon completion of network training. GLOnet
has been adapted for various photonics systems including
metasurfaces and thin film stacks, and while it does not
guarantee the global optimal device, it can yield exceptionally
high-performing devices with capabilities beyond those
designed using other methods.

A detailed discussion of how GLOnet works and why it is so
effective is beyond the scope of this Perspective, but we
summarize a few key points. First, as a population-based
optimizer that reframes the optimization of physical device
parameters to the optimization of weights in a high-
dimensional neural network space, GLOnet smoothens the
design landscape so that the distribution of outputted devices
can effectively evolve without easily getting trapped in local
optima. Second, GLOnet can readily scale to high-dimensional
problems without a corresponding increase in computational
resources because the batch size does not scale with problem
dimensions. As such, GLOnet can be effectively and efficiently
applied to problems featuring hundreds to thousands of
dimensions. Third, there is a strong relationship between
network architecture and algorithm capability, and proper
exploitation of this relationship provides GLOnet the best
opportunity to search for high-performance freeform devices.
The presence of such a strong relationship also indicates that
experience and hyperparameter tuning are required to properly
maximize the potential of the algorithm.

For both local and global gradient-based optimizers,
experimental material and device constraints can be directly
incorporated to ensure that the final device designs are
practically manufacturable. For final devices comprising
discrete dielectric materials, level set formalisms can be used
or regularization penalty terms can be added to the FoM that
push continuous grayscale dielectric values to discrete values
over the course of optimization."****”** Devices can be made
robust to geometric variations by evaluating multiple devices
with different perturbed boundary configurations for each
iteration and using their collective gradients to update the
design.*”* Minimum feature size constraints can be
incorporated into the optimization algorithm using reparame-
terization, in which devices are represented in a continuous
latent space and analytical mathematical transformations are
used to transform those representations to constrained physical
devices.”' Gradients calculated on physical devices map back
to their latent space representation using the chain rule. By
explicitly baking in hard constraints to the device description
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design landscapes, global freeform optimization is the only practical method for identifying high-performing devices. MFS: Minimum feature size.

itself, the optimization algorithms can more effectively search
within a feature space comprising only suitable candidate
devices.

The existence of a wide variety of optimization methods
begs the following question: which method is the most
effective and computationally efficient for a given problem?
There is no general answer, and the choice and suitability of an
optimization algorithm are highly dependent on the specific
optimization objective, problem constraints, device form
factor, and device material composition.”> Some trends can
be garnered from optimization histograms for representative
thin film stack and metasurface systems, as shown in Figure 4.
For the thin film stack system, the FoM is defined as the
deviation between the actual and the desired device spectral
profile and is to be minimized with a lower bound of zero,
while the FoM for the metasurfaces is the device efficiency and
is to be maximized to an upper bound of 100%. Grayscale thin
film and metasurface systems with simple objectives appear to
feature design landscapes that are particularly smooth with
many good local optima, such that one or a few local gradient-
based optimization runs are sufficient (Figure 4a). Thin film
systems and high contrast metasurfaces featuring more
complex objective functions have design landscapes that
feature more variation in local optima performance, thereby
requiring either GLOnet or a large ensemble of local
optimization runs with different initializations (Figure 4b).
High-dimensional, multiobjective problems have complex
design landscapes featuring many poor local optima, in
which case local gradient-based optimization is no longer
effective and global optimization is required (Figure 4c).

We add a few additional thoughts on the optimization of
freeform photonic devices. First, the design landscapes for
photonic systems are not intuitive, and experience is the best
way to deduce the suitability of a method for freeform
optimization. Experience includes the running of local and
global optimizers on representative model systems, with proper
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hyperparameter tuning, to provide benchmarks on the quality
of local optima within the design landscape. It also includes
quantitative comparisons of the performance of optimized
devices with tight bounds calculations. Second, when
appropriate and feasible, it always helps to relax the system
parameters (i.e., dielectric value constraints) or add more
design degrees of freedom (i.e., increase the size of the device)
to modify the design landscape in a manner that improves the
outcomes from gradient-based optimization. Third, while we
anticipate that gradient-based optimization will be the basis for
most problems in photonics, there are problems, such as the
topology optimization of metal-based systems, where pop-
ulation-based gradient-free methods are a more viable solution.
These problems are generally characterized as having high
dimensionality, gradients that are vanishing or that provide
limited information, landscapes that are highly irregular and
discontinuous, and computationally expensive hyperparameter
tuning.

B ACCELERATION OF ELECTROMAGNETIC SOLVERS

A practical bottleneck of all optimization methods is the time
and computational resources required to perform fullwave
simulations. While many accurate time domain (i.e, FDTD
and DGTD) and frequency domain (i.e, FDFD and FEM)
solvers have been developed by the computational electro-
magnetics community, they all operate on the same premise:
the computational problem is first set up from scratch, and
then a series of calculations is used to produce fullwave
solutions that are consistent with Maxwell’s equations. For
time domain simulations performed on standard computing
processing units (CPUs), field updates are computed in each
voxel for each time step and the total compute time scales
linearly with the number of voxels.”> For frequency domain
simulations, Maxwell’s equations are solved by inverting a large
matrix and computing time scales as approximately the square
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of the number of voxels.”* These Maxwell solvers can be
serially called hundreds to thousands of times in an iterative
optimization algorithm, thereby taking hours to days to
perform a single optimization run. Fortunately, innovations
in computing hardware and software have led to new classes of
Maxwell solvers with orders of magnitude faster speeds.

On the hardware front, the proliferation of graphics
processing units (GPUs) has enabled new ways of parallelizing
calculations within an electromagnetics simulation. GPUs are
specialized computing hardware that were initially developed
for computer graphics applications and have become main-
stream hardware for machine-learning tasks. For FDTD
algorithms, the field update at each voxel position is a local
calculation involving only neighboring voxels, and the large-
scale parallelization of these calculations with GPUs has
enabled a 20X speedup in computing time.”> For FDFD and
RCWA frequency domain solvers, which solve Maxwell’s
equations through matrix computations, GPU-supported
mathematical libraries and programming models**>” have
vastly improved the speed and efficiency of matrix operations
particularly for large matrices. In another recent development,
broad access to servers and cloud computing resources have
been game changing, as it now allows anyone with an Internet
connection to have immediate access to thousands of CPUs.
Access to these resources allows for the local optimization of
multiple devices or for the evaluation of a batch of devices
within a global optimization iteration to be performed in
parallel. Individual simulations of large domains can also be
accelerated using domain decomposition techniques in which
the evaluation of the domain is performed by iteratively solving
smaller subdomain problems in a parallelizable manner.”*>’

On the software front, concepts in machine learning have
emerged as new algorithmic approaches for accelerating the
evaluation of Maxwell’s equations. A key insight with these
methods is that most electromagnetics problems are not
arbitrary but are regularized: practical devices are made from a
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small selection of materials and have limited form factors, such
as patterned thin films on a substrate. As the electromagnetic
field solutions from these devices possess related features,
structure—field relations from a subset of these devices can
help inform the solution of a related unsolved problem.
Importantly, training data representing these structure—field
relations can be readily and accurately curated with fullwave
solvers.

Surrogate Maxwell solvers in the frequency domain have
been realized using convolutional neural networks (CNNs),
which are deep networks developed in the computer vision
community that specialize in image processing tasks (Figure
Sa). In an initial demonstration, CNNs were implemented in
which the inputs were images of the photonic devices and the
outputs were maps of the full electromagnetic field
responses.’” The networks trained exclusively using simulated
training data, and they could produce accurate field solutions
for a variety of freeform nanoantenna devices. Physics-
augmented CNNs have since been implemented as surrogate
solvers in which the networks were trained with two loss terms:
data loss specified by training data and physical loss in which
the outputted fields were explicitly constrained to obey the
wave equation.”’ These physical constraints were rigorously
enforced with a finite-difference Maxwell formalism that
specified the device dielectric distribution and electromagnetic
fields on the Yee grid. The incorporation of physics in these
networks led to smoother and more accurate field solutions, in
part because the finite difference representation of the wave
equation explicitly enforced physical relationships between
neighboring voxels on a discrete field map. These surrogate
simulators were trained to model dielectric metasurfaces and
used in conjunction with the adjoint variables method and
GLOnet to perform gradient-based optimization, where high-
efficiency freeform devices were designed to be 3—4 orders
magnitude faster than with conventional algorithms. The best
devices from the optimization process exceeded the perform-
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Photonics.

ance of the best devices in the training set, indicating the
generalization capabilities of these algorithms.

Recent research additionally indicates the potential of deep
neural networks to accurately model the time domain
electromagnetic behavior. In one study, it was shown that
recurrent neural networks (RNNs) have the same algorithmic
form as finite-difference wave solvers. With the RNN
framework, the input signal is an incident source, the output
signal is the system wave response at a point in space, and the
hidden states embody the wave fields within the system
(Figure Sb). These concepts were used to model and design
physical systems supporting nonlinear scalar wave behavior.”’
Graphical neural networks (GNNSs), which are an emergent
class of neural network architecture that specialize in the
processing of graphical data, have also been shown to
effectively model wave phenomena in the time domain. They
are a natural network architecture for wave modeling because
the process of wave propagation, in which wave energy passes
between neighboring voxels, can be readily modeled as energy
flow between interconnecting nodes of a graph. Initial
demonstrations of GNNs trained with simulation data indicate
that these networks could serve as accurate surrogate time
domain simulators for fluid mechanics systems and operate
nearly an order of magnitude faster than conventional
solvers.®> More advanced algorithms utilizing transformers, in
which correlations in time within data are learned, exhibit even
more accurate wave simulation capabilities.”* We anticipate
that the application of these concepts to photonic systems and
their incorporation of physics augmentation will enable
accurate and accelerated electromagnetic time domain
simulations.

Significant efforts have also been made to train deep
networks end to end, where the input to the network is a
device geometry and the output is a performance metric such
as scattering spectrum, far-field profile, or efficiency®"*>*
(Figure Sc). In these networks, the physical relationships
between layout and optical performance are implicitly learned
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through the training process. A properly trained network can
be evaluated with millisecond speeds and can be directly used
in an optimization procedure for a desired performance metric
using backpropagation, which is a gradient-based method in
which the device geometry is iteratively modified to minimize
error between the network output and the desired performance
metric.”*® End-to-end networks have been used to success-
fully model a variety of nanostructure scatterers, wavelength
demultiplexers, metamaterial unit cells, and thin film stack
systems, and they have had general success in modelin

systems described with a handful of free parameters.’

However, it has proven challenging to apply these concepts
to high-dimensional systems without the use of a tremendous
amount of training data, in part because these networks
attempt to capture more abstracted input—output relationships
that cannot be explicitly regularized with physical constraints
such as Maxwell’s equations. These concepts are therefore well
suited for low-dimensional problems, whereas the combination
of surrogate Maxwell solvers with auxiliary physics-based
algorithms, such as the adjoint variables method or near-to-far-
field transformations, have more potential for deep network
generalization to high-dimensional systems.

B FABRICATION OF FREEFORM DEVICES

The final step to experimental device prototyping is fabrication,
which can be performed using thin film processing methods
based on CMOS chip fabrication or additive manufacturing.
Thin film processing involves a sequence of steps in which the
material is deposited, lithographically patterned, and etched,
and multilayer devices can be achieved by repeating these steps
together with planarization procedures. Microscale and
nanoscale additive manufacturing typically use light to pattern
a photosensitive material, and they include stereolithography”®
and two-photon polymerization’' platforms. A principal
challenge in fabricating freeform photonic devices with either
of these methods is that the designs often demand the
patterning of structures with disparate length scales or
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curvilinear shapes, leading to particularly nontrivial manufac-
turing errors. In the case of thin film processing, manufacturin

errors can arise in the form of defects in material deposition,7

lithographic proximity error,”” and loading effects in etching.”*
For all of these errors, the processing of an individual feature is
sensitive to the presence and processing of disparate
neighboring features. For additive manufacturing, proximity
errors from patterning and mechanical stresses arising from
patterning and postprocessing steps can lead to shape
deformations in the final structure.

Algorithms that can accurately model and correct fabrication
errors are therefore indispensable to ensuring the success of
device manufacturing and minimizing the requirement of
intensive process calibration for each device. Among the many
efforts aimed at this task, deep neural networks have emerged
as promising algorithms due to their ability to capture
nonlinear relationships between desired and experimentally
realized geometric features in a device. Importantly, deep
networks can implicitly learn these relationships through
experimental data and account for factors of unknown physical
or chemical origin that can be impossible to explicitly capture
through purely physical modeling. While many of these
techniques were initially developed for high-throughput tool
sets used in the semiconductor and integrated circuit industry,
their versatility makes them readily adaptable to a broad range
of fabrication tool sets.

In thin film processing, machine-learning methods have been
successfully employed to improve materials growth, lithog-
raphy, and etching steps. For materials growth, use of the data
sciences to improve the quality of grown materials has become
a field in itself.”” To cite a representative example, Bayesian
optimization can be used to identify material growth
parameters in just a few trials that yield optimal films with
virtually no porosity”> (Figure 6a). Deep neural networks have
become a standard tool to perform optical proximity correction
(OPC) in the lithography process, in which lithography mask
patterns are adjusted to improve the fidelity of the
corresponding output patterns. In early examples, multilayer
perceptron networks (MLPs)’® and CNNs”’ were used to
predict optimal mask layouts given the desired exposure
pattern. Generative neural networks serving as an inverse
design tool for lithography have also been trained in a
generative adversarial network framework to produce candi-
date quasi-optimal masks for given target patterns®’ (Figure
6b). Concepts from OPC have been readily extended to the
modeling of etching errors, where CNNs have been used to
accurately model the etchin7g masks for given target patte
profiles of nanoscale features © (Figure 6¢).

Machine-learning methods have also been developed for
additive manufacturing processes to reduce geometric error in
the final printed devices.*' In a basic example, a MLP was
trained to model thermal stress within the manufactured
structure, from which modifications to the original design were
made to compensate for thermal-driven geometrical deforma-
tions.”” CNNs have also been shown to be capable of
accurately predicting the shape of printed features as a function
of their location, orientation, and geometric design.83

Looking ahead, there are many opportunities to further
streamline the application of the data sciences to freeform
device fabrication. One opportunity is to devise strategies for
end-to-end algorithms that can account and correct for errors
accumulating from multiple manufacturing steps. These
algorithms not only are easier to implement than a suite of
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algorithms tailored to each step but also have the potential to
produce better results because they can mitigate the
accumulation of errors over the full serial fabrication flow.
Another opportunity is to incorporate data-efficient machine-
learning techniques, such as active learning and transfer
learning, to limit the amount of data used for algorithm
training.”»* The reality is that the nature of fabrication errors
varies with changes to equipment, operating conditions, and
sample type, and it would be impractical to procure a large data
set of theoretical designs and actual layouts with each change.
Active and transfer learning can allow relatively small data sets
of theoretical designs and actual layouts to be used together
with a precomputed data-intensive model to accelerate the
adaptation of these algorithms to customized equipment and
fabrication processes. We anticipate that new practices for
integrating fabrication and metrology tools can accelerate and
even automate the training of error correction algorithms in a
manner that ensures the reliable and rapid prototyping of
freeform photonic devices.

B OUTLOOK

Algorithmic tools for optical engineering are changing the
conceptual foundations for how optical system design is
approached. Unlike traditional concepts based on intuitive
physical models devised by people, algorithmic-based methods
are able to identify new, nonintuitive structure—function
solutions by treating the relationship between the device and
the optical response as a physics-constrained data relationship.
Data science algorithms are playing a large role in this
evolution, as they are in many fields of research. However, they
have proven to be particularly disruptive in photonics in part
because the quantitative physical underpinnings of the field are
well developed: fullwave Maxwell solvers effectively serve as
ground truth oracles, and they can be used to compute
structure—function solutions to expediently produce training
data or rigorously calculate gradients. Data science algorithms
that combine physics with data are particularly adept at
learning and utilizing nonintuitive structure—function relation-
ships while remaining grounded in reality with their explicit
incorporation of physics.

Looking ahead, we anticipate many opportunities for
algorithms to further enable new paradigms in optical
engineering. One is the development of true multiscalar
optical design and fabrication platforms that combine
refractive, scalar diffractive, and fullwave optics. Optical
systems at each length scale feature unique capabilities, and
the combination of these different modalities can be synergistic
and produce systems with exceptional bandwidth, aberration
correction, and functional multiplexing properties. They also
provide new avenues to bridging free space and chip-based
optical systems. These concepts are complex to implement in
part because of difficulties posed by the modeling and
fabrication of optical systems featuring orders-of-magnitude
different length scales and due to the siloing of optical
technical expertise of a given length scale into distinct
academic disciplines. Nonetheless, end-to-end analysis of true
multiscalar systems is now possible on the algorithms front,
where differential ray-tracing algorithms developed for
refractive optics feature a compatible mathematical framework
with fullwave simulation and design software based on
autodifferentiation.*®” Recent work on the simulation and
codesign of hybrid refractive and metasurface optical
systems,”* ™" including those that support aberration-corrected
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imaging functionality,”" further highlights the promise of
multiscalar optical design.

There are also substantial opportunities to connect optical
engineering to physical domains outside of electromagnetics
and even to software, which will lead to optical systems with
completely new functionality. As algorithm-based optical
design involves the maximization of a FoM, it is relatively
straightforward to incorporate other physical metrics into the
FoM involving a solid mechanics, fluid mechanics, electronic,
chemical, or quantum-based objective to produce truly
multifunctional systems designed for both optical and
nonoptical capabilities. The evaluation and optimization of
such figures of merit is further streamlined by the ability of
gradient-based calculations, via the adjoint method or
autodifferentiation, to be applied to these different physical
domains. Software, specifically deep neural networks, can also
be incorporated into systems to produce optical hardware—
software systems with new capabilities””* such as enhanced
imaging properties, fast data processing, and low energy
consumption. As both optical devices and neural networks can
be individually designed using gradient-based optimization, it
is straightforward to perform gradient-based end-to-end design
of both the optical device and the neural network
simultaneously.

There are still many innovations that will be required for
these tools to be truly accepted and broadly used by the
photonics community. First, the methods need to be scalable
to large domains of arbitrary dimension without a loss in
accuracy. This is a challenge for many algorithms, particularly
data science algorithms where the domain dimensions are
typically fixed and relatively small. Second, the interface
between electromagnetics and the data sciences, including the
relationship between scientific computing operations and
neural network architecture, needs to continue to be refined.
A recent example of such a development is the advent of
Fourier neural operators,”* which perform nonlinear process-
ing of data in the Fourier space and are particularly well suited
for processing wave-type data forms. Third, these algorithms
need to be developed and packaged in a manner where they
are openly available,"” robust, and easy to use. Currently, many
of these algorithms require the user to have highly specialized
knowledge in the data sciences, optimization, or physics. Mass
proliferation of these concepts and their adaptation to user-
specific problems will ultimately require algorithms to run with
automated and eflicient hyperparameter tuning, neural net-
work architecture specification, and active-learning modalities.
Fourth, while many of these concepts offer black box-like
solutions to device design and implementation, more founda-
tional advances in optical engineering will be enabled by
interpretable algorithmic approaches that help to connect
nonintuitive structure—function solutions to broader physical
insights.
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