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ABSTRACT: We introduce WaveY-Net, a hybrid data- and
physics-augmented convolutional neural network that can predict
electromagnetic field distributions with ultrafast speeds and high
accuracy for entire classes of dielectric nanophotonic structures.
This accuracy is achieved by training the neural network to learn
only the magnetic near-field distributions of a system and to use a
discrete formalism of Maxwell’s equations in two ways: to calculate
electric fields from the magnetic fields and as physical constraints
in the loss function. We show that WaveY-Net can accurately
predict the near-fields in periodic, high dielectric contrast
nanostructure arrays, and that it can combine with gradient-
based algorithms to dramatically accelerate the local and global freeform optimization of diffractive photonic devices by orders of
magnitude faster speeds. We anticipate that physics-augmented deep neural networks will transform the practice of nanophotonics
simulation and design.
KEYWORDS: nanophotonics, inverse design, simulation, freefrom optimization, neural networks, deep learning

■ INTRODUCTION
Maxwell simulators are essential tools for the characterization
and design of electromagnetic systems. These systems operate at
frequencies spanning the radiowave to X-ray and include a
diversity of antennas,1−3 diffractive surfaces,4−7 metamateri-
als,8−10 and guided wave-based photonic circuits.11−13 Among
the most popular frequency domain Maxwell solvers are the
finite element method (FEM)14,15 and finite difference
frequency domain (FDFD) algorithms.16−19 In both algorithms,
the system domain is subdivided into discrete voxels, and the
simulator solves for electromagnetic fields by constructing and
inverting a sparse matrix with dimensions proportional to the
total number of voxels. While these methods can be used to
accurately solve general electromagnetics problems, the time
and computation cost of matrix inversion serve as practical
bottlenecks for the simulation of large domains and for design
tasks, where large numbers of electromagnetic simulations are
required to perform iterative optimization.

To address this bottleneck, deep neural networks serving as
high speed surrogate Maxwell simulators have emerged as
promising algorithms that can operate orders-of-magnitude
faster than conventional Maxwell simulators.20−26 Many initial
attempts to use neural networks in this manner were based on
the training of fully connected deep neural networks in an end-
to-end manner, where the inputs to the network were geometric
parameters describing a photonic structure and the output was a
physical performance parameter or spectral response.27−31

While these concepts have served as accurate modeling tools
for systems described by a handful of geometric parameters,
their extension to more complex, higher dimensional problems
has proven challenging. First, while there are clear physical
relationships between the inputs and outputs of these networks,
these relations are complicated and are not bounded by explicit
physical constraints. More generally, the networks do not
explicitly utilize spatial relationships involving the device
geometries or optical response. Second, there is often a large
dimensionality mismatch between the input and output data
forms in these networks, which adds difficulty to the network
training process. Direct scaling of these concepts to more
complex systems would simply not work or require an
impractical amount of data for training.

To model high-dimensional data forms, such as electro-
magnetic field distributions within a photonic structure,
modifications to these deep learning approaches have been
proposed. In one example, dimensionality-reduced forms of the
fields were trained in conjunction with a fully connected deep
network to map metasurface geometry to field distribution.32 In
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another example, convolutional neural networks (CNNs) were
shown to be effective at predicting electromagnetic field
distribution maps within a photonic structure.33 While these
demonstrations pointed to the potential of neural networks as
simulators, they were exclusively trained using data with no
knowledge of Maxwell’s equations,34 placing limits on their
ability to process and learn wavelike electromagnetic phenom-
ena.

To expand on the capabilities of deep neural networks for
physical science problems, techniques have been developed to
either augment or completely replace the data-driven loss maps
used for training with physics-driven loss maps generated using
the governing equations of the system. In recent work, the
concept of physics-only training for electromagnetics was
successfully demonstrated for the modeling of low-contrast
refractive optical systems.26 More generally, physics-informed
neural networks (PINNs) have been proposed, which explicitly
incorporate physical constraints, such as a governing differential

equation, into the loss function.35−39 These concepts have been
developed in the field of fluid mechanics and have been adapted
to fully connected and CNN architectures.40−43 More recently,
they have been utilized to solve vectorial electromagnetics
problems, where an analytic form of Maxwell’s equations and
boundary conditions were used to constrain the loss
function.44−46 The explicit incorporation of physics into the
network training process produced impressive simulation and
inverse design demonstrations. However, these methods that
solve differential equation problems through network training
are resource intensive to run, and they involve the solving of
individual problems and not classes of problems. To be more
specific, PINNs tasked with solving PDEs undergo a whole
neural network training process to solve a single partial
differential equation problem with predefined equation
parameters, with the training process taking tens of minutes to
hours.42 Furthermore, in our case a separate PINN would need
to be trained for each device in the training set, as they have

Figure 1. Overview of the WaveY-Net network architecture and training procedure. (a) WaveY-Net trains the UNet architecture to learn the
electromagnetic behavior of dielectric-based metagratings (left). The input is an image of a single unit cell of the metagrating (center-right), and the
outputs are magnetic field maps (center-right). Electric field maps are calculated from the magnetic field maps using a discrete version of Ampere’s law
(right). The devices being studied are nanoridge-based freeform metagratings with different grating materials, varying number of nanoridges, and
varying ridge heights. Orange arrows: shortcut connections. Pink arrows: periodic convolution and maxpooling operations. Blue arrows: periodic
convolution and upsampling operations. (b) Computational graph of the loss function. The loss function comprises two terms: data loss, which
quantifies deviations between ground truth and predicted magnetic field maps, and Maxwell loss, which quantifies the deviation of the predicted
magnetic field maps from Maxwell’s equations. (c) Calculation of Maxwell loss. Periodic boundary conditions along vertical boundaries and Dirichlet
boundary conditions along horizontal boundaries enforce a well-posed loss expression. Maxwell loss within the magnetic field maps is calculated using
a discretized version of the wave equation residue, which imposes relationships between magnetic field values at a given voxel and those of its nearest
neighbors.
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unique sets of positions for the dielectric ridge-air boundaries
that can only be learned by a single network. As such, PINNs are
less practical for quickly solving classes of differential equation
problems.

In this Article, we introduce Maxwell surrogate simulators
based on a hybrid data- and physics-augmented training
approach. We term these networks WaveY-Nets, and they
combine the generalization and high-speed solving capabilities
of data-only training with explicit Maxwell equation constraints
from physics-informed training. To maximize network accuracy
and capacity, we train the networks to output the magnetic field
maps of a system and calculate electric field maps from the
magnetic fields using Ampere’s law. This approach follows FEM
and FDFD formalisms, which solve for one field type and use
Maxwell’s equations to calculate the other field type,14,16,19 and
it takes advantage of the fact that the electric and magnetic field
distributions have the same information content and do not
need to be independently learned. We also show that these high
speed surrogate solvers can be used in conjunction with
established gradient-based optimization algorithms to perform
local and global freeform nanophotonic inverse design. Unlike
concepts that attempt end-to-end inverse design solely through
the training or evaluation of deep neural networks,47−52 our
method leverages the efficacy of known gradient-based methods
to accelerate inverse design in a stable manner. As a model
system, we consider surrogate simulators that apply to periodic
arrays of dielectric nanoridges comprising variable nanoridge
heights, material refractive index, and topology. We show these
surrogate simulators can accelerate electromagnetic simulations
by orders of magnitude speeds and can be directly used in local
and global adjoint optimization algorithms for designing
metagratings with selective light diffraction capabilities.

We note that aspects of our concept share superficial
similarities with developed ideas in the PINNs literature:
PINNs can also utilize a combination of data and physics-based
loss to solve differential equations, and they can be configured to
solve forward and inverse physical science problems. However,
we emphasize that our method is conceptually distinct from
PINNs in the following ways. First, PINNs take spatial
coordinates as inputs and solve for continuous field
representations while WaveY-Nets take the dielectric distribu-
tion as inputs and solve for discrete field representations.
Second, an individual PINN is trained to solve for fields for a
single fixed dielectric distribution configuration. On the other
hand, a single WaveY-Net is trained to solve for a class of
configurations. That is, WaveY-Nets perform operator learning
of Maxwell equations.53 Third, PINNs can take tens of minutes
to hours to perform forward and inverse design,42 which is
impractically long. WaveY-Nets, on the other hand, can perform
a forward simulation in milliseconds and be used to perform
gradient-based inverse design in seconds, reducing the time for
these calculations by orders of magnitude.

■ RESULTS
Network Architecture and Loss Formulation. The

diffractive system captured by our surrogate model consists of
dielectric nanoridges illuminated by a normally incident beam
with a wavelength of 1050 nm (Figure 1a). The wave has
transverse magnetic (TM) polarization, such that the electro-
magnetic field distribution is fully described by field components
Hy, Ex, and Ez. The dielectric nanoridges are situated on a silicon
dioxide substrate and have a period of 1600 nm, producing a
total of eight diffraction orders. The full simulation window is

defined on a 64 × 256 pixel grid with a window height of 400 nm,
and it covers a single device period with thin substrate and
superstrate regions below and above the device, respectively.
This discrete pixel representation sets the spatial resolution of
the device layout and electromagnetic fields to be 6.25 nm along
both the horizontal and vertical directions. The surrogate model
applies to freeform diffractive structures comprising varying
materials, number of nanoridges per unit cell, and ridge heights.
The refractive index of the structures is selected from the
continuous range of 2.48 to 3.57, which overlaps with popular
high contrast metasurface materials including anatase titanium
dioxide (n = 2.48),54 gallium phosphide (n = 3.11),55 indium
phosphide (n = 3.29),56 gallium arsenide (n = 3.45),57 and
polycrystalline silicon (n = 3.57)58 (all the refractive indices are
taken at a wavelength of 1050 nm and only the real part of the
refractive index is considered as these materials are lossless at the
wavelength of interest). The grating period contains from one to
four total dielectric ridges and the ridge height ranges from
293.75 to 350 nm with step sizes of 6.25 nm. The device
landscape contains all devices in which the dielectric ridges and
air spacers have widths of 62.5 nm or greater, and it corresponds
to approximately three trillion unique device configurations for a
given device refractive index.

Our network scheme is outlined in Figure 1a and Figure S1
and is based on the UNet architecture,59 which is a CNN
architecture where the input and output data structures are
images with the same dimension. Shortcut connections
strengthen relationships between the input and output images.
UNets were initially popularized in the computer vision
community for image processing tasks such as image
segmentation,59−62 and they are particularly well suited for
our application because there exists a strong correspondence
between input geometry and output field distribution. These
networks were the basis for the data-driven surrogate electro-
magnetic simulators reported in ref 33. Our network input is a 64
× 256 pixel image of the simulation window, where the input
image pixel values are relative permittivity values of the
corresponding material. The output is 64 × 256 pixel images
of the real and imaginaryHy field maps within the structure. The
complex Ex and Ez field maps are calculated from Hy using
Ampere’s law.

We name our network WaveY-Net because it uses Maxwell’s
equations based on the Yee grid formalism to enforce wavelike
field behavior of the output. The Yee grid is an established
framework for finite-difference time and frequency domain
electromagnetic simulations, and it is formulated to rigorously
specify spatial relationships between discrete field components,
boundary conditions at dielectric discontinuities, and discrete
derivative operations.63 A schematic of the two-dimensional TM
Yee grid is in Figure S3. To summarize, theHy fields are placed at
the center of each pixel and parallel electric field components are
placed at the pixel boundaries. Permittivity profiles are
calculated for each field component to account for the pixel-
level spatial offset defining each component. With the Yee grid,
the discrete formulation of Ampere’s law used to calculate Ex and
Ez from Hy is as follows:
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where i and k are discrete index labels for the horizontal and
vertical pixel positions, respectively.

To train WaveY-Net, the loss function is specified to have two
components (Figure 1b):

= +L L Ldata Maxwell (3)

where Ldata is data-driven loss from which the network attempts
to fit the network output fields with a ground truth training set. It
takes the form of mean absolute error (MAE):

=
=

HL
N

H1

n

N
n n

data
1

( ) ( )
1

(4)

where H represents ground truth field profiles from the training
set, Ĥ are the field profiles outputted from the network, N is a
given batch size, and n is the index of the device within a batch.
LMaxwell specifies the compliance of the outputted fields with
Maxwell’s equations and is the MAE of the magnetic field wave
equation residue:
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The discrete Yee grid-based formalism of the magnetic field
wave equation is eq S1 in the Supporting Information, Section 2.
If the calculated Maxwell loss for a given pixel in an outputted
field profile is zero, it means that the fields local to that pixel are
consistent with Maxwell’s equations. α is a hyperparameter that

balances the contributions of data and Maxwell loss and it is
dynamically tuned during network training in a manner that
stabilizes the training process. More details pertaining to the
network architecture and training methodology are in the
Methods Section and Supporting Information, Sections 1 and 3.

While Ldata and LMaxwell both reduce to zero as the outputted
fields converge to ground truth values, each loss term captures
different information about the fields. Ldata captures the accuracy
of the fields on a pixel-by-pixel basis, ensuring that the outputted
fields are close to ground truth values but without explicitly
accounting for spatial relationships between pixels. LMaxwell, on
the other hand, utilizes discrete spatial derivatives that explicitly
capture physical relationships between neighboring field pixels.
While CNN kernels are able to implicitly learn spatial
electromagnetic field relationships through data-based training,
LMaxwell more directly imposes spatial constraints and relation-
ships between neighboring pixels, as defined explicitly with
Maxwell’s equations. These spatial correlations can be visualized
by the calculation of LMaxwell for a given pixel, shown in Figure 1c,
which has the form of a 3 × 3 pixel kernel. As a kernel, LMaxwell
can be efficiently calculated for every pixel in a field map using a
graphical processing unit (GPU), which naturally processes
convolution operations in a fast and parallel manner. With the
complementary nature of these loss functions, it is possible for
Ldata to be low and LMaxwell to be high if the outputted field values
are approximately correct but there are large field fluctuations
between neighboring pixels. It is also possible for Ldata to be high

Figure 2. Benchmark comparison between WaveY-Net and a data-only UNet, both which predict magnetic field maps. (a) Scatter plot of magnetic
wave equation residue MAE vs magnetic field MAE. The predicted magnetic field maps are from 3000 test devices evaluated by each network. (b)
Scatter plot of the electric fieldMAE versus magnetic fieldMAE for the same devices. The definition of normalizedMAE is inMethods. (c) Scatter plot
of the predicted versus ground truth far-field diffraction efficiencies for the same devices, for light diffracting into the transmitted +1 order. (d) Scatter
plot of the magnetic field MAE versus relative permittivity of the grating material. Error bar stands for standard deviation. Red dashed lines mark 11
permittivity values seen in the training set. (e) Device layout,Hy field map, and Ex field map of a representative, randomly sampled device from the test
set. (f) Magnetic and (g) electric field maps, field MAE maps, and wave equation residue MAE maps for the sampled device evaluated by both
networks. H residue: wave equation residue of the magnetic field. E residue: wave equation residue of the electric field. Color scales: H-field [-0.015
(blue), 0.015 (red)], H-fieldMAE [0 (white), 0.001 (black)], H residue [0 (white), 0.01 (black)], E-field [-3 (blue), 3 (red)], E-fieldMAE [0 (white),
0.2 (black)], E residue [0 (white), 20 (black)].
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and LMaxwell to be low if the local fields are wavelike but dissimilar
to the ground truth values.

To ensure that LMaxwell is well posed, it is essential that the loss
function incorporates proper boundary conditions. Without
proper boundary conditions, LMaxwell can push the outputted
fields to wavelike profiles that locally satisfy Maxwell’s equations
but are far from ground truth values. At the left- and right-most
columns of the field maps, we naturally apply periodic boundary
conditions within the UNet framework by applying periodic
padding to the convolutional calculations along the x-axis
(Figure 1c). Dirichlet boundary conditions at the horizontal
field map boundaries are enforced by substituting the top and
bottom rows of the predicted field maps with ground truth
magnetic field values (see a more detailed explanation in the
Supporting Information, Section 4). In this manner, LMaxwell is
zero at all pixels only when the fields converge exactly to ground
truth values.
WaveY-Net Solver. To evaluate the impact of LMaxwell on

UNet simulator accuracy, we train WaveY-Net, which trains
using both Ldata and LMaxwell, and compare it with a data-only
UNet trained with only Ldata. In both cases, the neural networks
use 30 000 random device layouts and their associated fields as
training data, have outputs consisting of the real and imaginary
magnetic field maps, and use eqs 1 and 2 to calculate the electric
field maps. Training data are generated using an open source
FDFD solver.17 More details pertaining to the data set
preparation are in the Methods Section and Supporting
Information, Section 1. A summary of the performance of
both networks, compiled from 3000 test data, is presented as
scatter plots in Figures 2a-2c and Table 1. We find that WaveY-

Net and the data-only UNet are reasonably accurate magnetic
field surrogate solvers, with magnetic field MAE averages of
0.029 and 0.032, respectively (Figure 2a). As such, the addition
of LMaxwell produces a modest but not substantial improvement
in predicted magnetic field accuracy, as defined on a pixel-by-
pixel basis.

However, the fields outputted by WaveY-Net are more self-
consistent with the magnetic field wave equation compared to

the data-only UNet, with an approximately six times difference
in LMaxwell MAE between the two networks (Figure 2b). This
consistency of the magnetic field maps with the magnetic field
wave equation leads to more accurate calculations of the electric
fields, with WaveY-Net producing electric fields with average
MAE values over twice smaller than those from the data-only
UNet and with significantly improved consistency with the
electric field wave equation (Table 1 and Supporting
Information, Section 13).

To further quantify the utility of LMaxwell, we perform near-to-
far-field transformations64 on the electric fields produced by
each network and calculate diffraction efficiencies into the
transmitted +1 order. Accurate far-field amplitudes and phases
are required for tasks such as local and global freeform
optimization and will be utilized later in this study. More details
pertaining to the near-to-far-field calculation are in the Methods
Section and Supporting Information, Section 5. Scatter plots of
the predicted diffraction efficiencies compared to the ground
truth for fields generated by the two networks are presented in
Figure 2c. For field plots generated by the data-only UNet, there
are clear deviations between the predicted and ground truth
diffraction efficiencies, with an average efficiency error of 4.3%.
WaveY-Net, on the other hand, outputs fields that produce
relatively accurate near-to-far-field efficiency calculations, with
an average efficiency error of only 0.68%. This error does not
increase for high efficiency devices in spite of the fact that there is
a disproportionately low number of high efficiency devices in the
network training set. As such, Maxwell regularization is effective
at predicting usual figures of merit, for example, efficiency, by
enforcing long-range consistency through local field-map
constraints.

The generalization ability of WaveY-Net as a surrogate
Maxwell solver is noteworthy and captured in its ability to
accurately process different nanoridge refractive indices. This
analysis is shown in Figure 2d and Supporting Information,
Figure S26. While WaveY-Net is trained with data that only
contains 11 discrete permittivity values (red dashed line in
Figure 2d), the network is able to interpolate and predict
consistently accurate electromagnetic fields for devices compris-
ing permittivity values unseen in the training set. In fact, the
accuracy of themagnetic fieldmaps outputted byWaveY-Net for
interpolated and training set device refractive index values are
nearly identical. We note that the field MAE increases as the
permittivity value increases, which is as expected because the
complexity of the electromagnetic field distributions increases as
a function of material index, but that the average field MAE for
high index devices is nonetheless only approximately 4%. A
more extensive and detailed discussion of the generalization
ability of WaveY-Net is provided in Supporting Information,
Section 14.

To more clearly visualize the discrepancy between the fields
produced by both networks, we examine the electromagnetic
fields outputted by each network for a randomly selected test
device which has four silicon nanoridges within the unit cell with
a ridge height of 325 nm (Figure 2e). Ground truth Re(Ex) and
Re(Hy) field maps are also shown, with the other field
components presented in the Supporting Information, Section
6. The outputted magnetic field maps from both networks are in
Figure 2f and display good agreement with the ground truth field
map. Their corresponding MAE maps show pixel-level
deviations that each feature approximately 3% relative error.
However, the MAE map from the data-only UNet has a higher
nonphysical spatial frequency noise component. This difference

Table 1. Summary of Average MAE Values and Associated
Standard Deviation Values for the Test Data Analyzed in
Figure 2aa

normalized MAE data-only UNet WaveY-Net

H − Ĥ
avg 0.032 0.029
std 0.035 0.034

Ĥ residue
avg 4.331 0.696
std 0.687 0.117

E − Ê
avg 0.193 0.083
std 0.038 0.034

Ê residue
avg 275.66 27.20
std 54.15 5.23

aHere, “H − Ĥ” and “E − Ê” refer to the MAE data losses of the
predicted H and the subsequently calculated E fields, respectively. “Ĥ
residue” is the Maxwell Loss calculated using the discretized wave
equation derived for the H field, as defined in eq 5. “Ê residue” refers
to the average of the MAE values of the residue maps calculated for
both components of the E field using the discretized wave equations
defined by eqs S12 and S13.
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is attributed to the spatial filtering functionality of the LMaxwell
loss term, which enforces spatial derivative constraints between
neighboring pixels and pushes the fields to have spatially
smooth, wavelike forms. The benefits featured by Maxwell
regularization carry over to the calculation of electric field, where
the electric field maps produced from WaveY-Net are relatively
smooth and low in error while the data-only UNet electric fields
have visible high spatial frequency noise and regions featuring as
high as 25% error (Figure 2g). Errors are particularly amplified at
dielectric discontinuities, where the electric field components
have discontinuities themselves, and they carry over to the
electric field wave equation residue maps.

The acceleration in computation enabled by WaveY-Net,
compared to a conventional full wave solver, is significant due to
a combination of software and hardware features. A summary of
the computation time required by a conventional FDFD solver17

andWaveY-Net for different numbers of simulations is shown in
Figure 3. A single simulation is defined as the evaluation of the

complex magnetic field maps for an individual device pattern.
Computations for the conventional FDFD solver are performed
with four cores of a 2.70 GHz Intel Xeon Gold 6150 CPU
Processor with 32 GB of RAM, and those for WaveY-Net are
performed with one NVIDIA A100 GPU with 40 GB of VRAM
and PCIE connection. The serial WaveYNet solver provides a
well over 2 orders of magnitude speedup than the FDFD solver
and the parallel WaveYNet provides nearly a 4 orders of
magnitude faster speedup in computation. For the evaluation of
7000 devices, the FDFD solver takes approximately 1 day while
the serialWaveYNet, which evaluates one device at a time, take 3
min. The parallel WaveY-Net evaluates 20 devices at a time by
taking advantage of the parallel computing capability of GPUs
and can evaluate 7000 devices within 20 s. A more detailed
comparison can be found in Supporting Information, Section 8.
It is also noted that these speedups featured by WaveY-Net lead
to significant reductions in environmental impact, which is
further detailed in the Supporting Information, Section 11.
WaveY-Net-Based Freeform Optimizers. We next turn

our attention to the utilization of WaveY-Net in design and
optimization algorithms, which are ideal platforms for
benchmarking high speed electromagnetic solvers because
they require the iterative evaluation of distinct device structures
and can require batches of devices to be evaluated at a given
time. Our focus will be on the freeform boundary optimization

of dielectric metagratings that selectively diffract normally
incident light to the transmitted +1 diffraction order. We
consider two methods for optimization: gradient-based local
optimization based on the adjoint variables method5,65−67 and
global optimization based on GLOnets,67−69 which is a
population-based evolutionary algorithm that performs opti-
mization through the training of a generative neural network.
Our approach for device optimization is fundamentally different
from prior studies of photonic inverse design with deep
discriminative networks, which are trained end-to-end and use
methods such as backpropagation to perform optimization. As
previously discussed, end-to-end networks have difficulty in
generalizing to complex, high dimensional problems due to the
lack of explicit regularization methods.27−29 Our neural
network-based solvers, on the other hand, are much more
capable of generalizing because they are explicitly constrained to
relate geometries with electromagnetic fields that obey
Maxwell’s equations. By combining generalized neural net-
work-based solvers together with the adjoint variables method,
our hybrid algorithm combines the accuracy and high speeds of
WaveY-Net with the capabilities of freeform gradient calcu-
lations for optimization.

A computational graph of the local adjoint-based optimizer is
shown in Figure 4a. At the core of this algorithm is the adjoint
solver, which takes the device geometry as the input and outputs
the diffraction efficiency and adjoint gradient of the device. The
gradient is used to iteratively perturb the device geometry in a
manner that improves device diffraction efficiency. We
formulate a WaveY-Net surrogate adjoint solver that utilizes
two separately trained WaveY-Nets. The first is a “forward”
simulator that predicts the magnetic fieldsHfwd given a normally
incident plane wave. The second is an “adjoint” simulator that
predicts the magnetic fields Hadj given an obliquely incident
plane wave oriented oppositely to that of the transmitted
diffracted beam (Figure 4a). The electric field maps Efwd and Eadj
are calculated from each corresponding magnetic field map
using eqs 1 and 2. The calculated electric field maps from the
forward simulator are also used to calculate the far-field
amplitude and phase response in the desired diffraction order,
using a near-to-far-field transformation, which yield diffraction
efficiency and the adjoint phase. The adjoint gradient is
calculated by integrating the forward and adjoint electric fields
and the adjoint phase. More details are provided in Methods.

To benchmark the adjoint solver, we calculate the adjoint
gradient maps for a random device using three types of
simulators: a fullwave FDFD simulator, a data-only UNet, and
WaveY-Net. The gradient maps are shown in Figure 4b and
indicate that the gradients from the WaveY-Net match well with
the ground truth values computed with the FDFD solver. On the
contrary, the adjoint gradients calculated using the data-only
UNets exhibit large errors in magnitude and even sign,
indicating these solvers are not sufficiently accurate for use in
optimization (more details are provided in the Supporting
Information, Section 9).

To evaluate the efficacy of the WaveY-Net adjoint solver to
perform optimization, we use this solver and the FDFD-based
adjoint solver to perform full gradient optimizations on silicon
metagratings with four nanoridges within the unit cell and a
ridge height of 325 nm. Figure 4c summarizes the results for
representative optimization runs where the same starting device
geometry and 100 iterations are used for each solver. The
algorithm using the FDFD solver shows a nearly monotonic
increase in efficiency over the course of the iterative process,

Figure 3. Plot of computation time vs number of simulations for three
different simulation methods: a conventional FDFD solver; serial
WaveY-Net, which simulates individual devices in series; and parallel
WaveY-Net, which simulates devices in batches of 20 in parallel.
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with a final device exhibiting a 77% diffraction efficiency. The
optimizer based on WaveY-Nets shows similar behavior and
produces a final device exhibiting a 76% diffraction efficiency,
indicating that the surrogate adjoint solver is sufficiently
accurate to perform iterative optimization. The final efficiency
value cited here is calculated using a fullwave solver. Ground
truth device efficiencies at each optimization iteration (orange
curve) nearly match predicted values (blue curve), indicating
that our near-to-far-field calculations of WaveY-Net-outputted
fields yield consistently accurate diffraction efficiencies. The
optimization curves do not match exactly, indicating that small
amounts of error in the gradient and efficiency calculations
produce small deviations in the optimization trajectory. To
further benchmark the consistency of our WaveY-Net adjoint
solver, we perform 100 local optimizations with random starting
devices using WaveY-Net and the FDFD simulator. Final device
efficiency histograms for optimizers using each simulator are
summarized in Figure 4d and show both distributions to have
similar average and maximum efficiencies. We have also
performed benchmark tests on optimization with other grating
materials such as titanium dioxide and gallium phosphide and
validated the effectiveness our WaveY-Net adjoint solver
(Supporting Information, Figure S27).

The WaveY-Net-based adjoint solver can also be directly
incorporated into the GLOnets algorithm. The optimization
pipeline is shown in Figure 5a and involves three principle parts:
the iterative generation of a batch of devices from a generative
network, calculating the performance gradients and efficiencies
of those devices to evaluate a loss function, and updating the

network weights in the generative network with backpropaga-
tion in a manner that minimizes the loss function. The generator
Gϕ contains a single fully connected layer followed by a batch
normalization layer, where ϕ are the network weights, and it
produces a distribution of devices x from uniformly distributed
noise vectors z. To enforce a minimum feature size of 62.5 nm
throughout the optimization process, we use a reparameteriza-
tion transformation in which an analytic transformation converts
network-outputted latent device representations to physical,
constrained devices.67 The loss function, formally derived in ref
68, is defined to be
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The efficiencies, Eff, and adjoint gradients, g, of the devices are
calculated with the WaveY-Net adjoint solver. As the WaveY-
Net adjoint solver relies on GPU hardware, it can evaluate full
batches of devices in parallel. K is the generator batch size and σ
is a hyperparameter for which 0.1 is used for optimal
performance.

We run the WaveY-Net-GLOnet algorithm for the same
metagrating example discussed above and also run an FDFD-
based GLOnet as a ground truth benchmark. A total of 200
optimization iterations, each with a generator batch size of 100
devices, are used in both cases. The results are summarized in
Figure 5b and show that WaveY-Net-GLOnet is able to
converge to nearly the same optimal device as the FDFD-
based GLOnet. The best sampled device has an efficiency of

Figure 4. Local freeform metagrating optimization based on a WaveY-Net surrogate adjoint solver. (a) Computational graph of the local adjoint
optimizer that maximizes device diffraction efficiency into the transmitted +1 diffraction order. Two WaveY-Nets are used to perform forward and
adjoint magnetic field simulations, which are used to calculate diffraction efficiency and the adjoint gradient. (b) A representative, randomly sampled
device layout and the corresponding adjoint gradient calculated using three different electromagnetic solvers: an FDFD solver that produces ground
truth gradients, WaveY-Net, and a data-only UNet. The gradients calculated using the FDFD solver and WaveY-Net are nearly identical. (c)
Optimization trajectories for local adjoint optimizations performed using an FDFD solver andWaveY-Net. The blue efficiency curve in theWaveY-Net
plot is predicted by WaveY-Net while the orange efficiency curve is based on FDFD simulations. The insets show the final device layouts and
efficiencies. (d) Histograms of 100 locally optimized metagratings with calculations performed using the FDFD solver andWaveY-Net. Devices being
optimized have four silicon nanoridges within the unit cell with a ridge height of 325 nm.
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0.84, which is higher than the best locally optimized device in
Figure 4d and indicative of an effective global search algorithm.
Figure 5c shows histograms of generated device efficiencies as a
function of iteration number for the WaveY-Net-GLOnet and
show that the generator initially has no knowledge of high
quality metagrating designs, but over the course of training, the
best generated device and the overall device distribution shift
toward higher efficiency regimes. A plot of the best device

efficiency obtained using WaveY-Net-GLOnet with different
batch sizes (Figure 5d) shows that to effectively search for the
global optimum, a batch size of at least 100 devices is ideal. The
requirement of large batch sizes plays to the strengths of the
UNet simulator approach, where the forward and adjoint
simulations of entire batches are computed in parallel. We
calculate that WaveY-Net-GLOnet runs approximately 7000

Figure 5.WaveY-Net-GLOnet algorithm for the population-based search of the global optimum. (a) Computational graph of theWaveY-Net-GLOnet
algorithm. The WaveY-Net surrogate adjoint solver is the module featured in Figure 4a. To perform optimization, a batch of devices with latent space
representations is produced by the generator and transformed into physical devices using reparameterization. Device efficiencies and adjoint gradients,
computed by the adjoint solver, are utilized in a custom loss function to push the generated device distribution toward the global optimum. FC: fully
connected layer. BN: batch normalization layer. (b) Optimization trajectories of GLOnet runs based on FDFD and WaveY-Net solvers. The final
optimal device layouts and efficiency values, shown in the insets, are similar. Batch size is K = 100. (c) Histogram of device efficiencies as a function of
iteration number from the WaveY-Net-GLOnet run. (d) Plot of final optimal device efficiency vs GLOnet training batch size obtained from WaveY-
Net-GLOnet. Devices being optimized have four silicon nanoridges within the unit cell with a ridge height of 325 nm.

Figure 6. WaveY-Net simulator for the modeling and design of volumetric metamaterials. (a) Schematic of a unit cell of a three-layer silicon
metamaterial modeled using WaveY-Net. (b) Efficiencies from a set of 11 multilayer devices, designed using WaveY-Net-accelerated local freeform
optimization, which can diffract incident light to the +1 and −1 transmitted diffraction orders with tailored amplitudes in each order. (c) Poynting
vector (S) distribution of Device 11 from (b), calculated from WaveY-Net field outputs. The curved Poynting vector trajectories are indicative of
strong nonlocal light−matter interactions. Color scales: Sx [−0.003 (blue), 0.003 (red)], Sz [−0.004 (blue), 0.004 (red)], S [0 (white), 0.003
(orange)].
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times faster than FDFD-based GLOnet, which is consistent with
the trends shown in Figure 3.

We further show that WaveY-Nets can readily generalize to
more complex and higher dimensional photonic systems. For
this demonstration, we consider multilayer metamaterials, which
are an emergent class of volumetric structured media that utilize
nontrivial nonlocal light-matter interactions to perform wave-
front engineering tasks.70−72 The added degrees of design
freedom are ideal for realizing devices exhibiting ultrahigh
efficiencies and multifunctional optical responses. A schematic
of our simulated system is in Figure 6a and shows a three layer
silicon metamaterial with the bottom two layers embedded in
glass. Such devices can be fabricated using a series of film
deposition, patterning, and planarization steps.72,73 We imple-
ment a WaveY-Nets surrogate adjoint solver for this system and
perform multiobjective freeform optimization of devices that
diffract incident light to the +1 and −1 diffraction orders with
tailored amplitudes in each order. The performances of a set of
these devices, designed using local freeform optimization, are
summarized in Figure 6b and show that the desired objective can
be achieved with arbitrary choice of amplitudes in each
diffraction order. The results from the WaveY-Nets-based
optimizer effectively match those from a fullwave FDFD solver
(see Supporting Information, Section 15). With the full electric
and magnetic field maps from WaveY-Nets, we calculate the
Poynting vector distribution for Device 11 in Figure 6b and
observe that power flow through the device is highly nonlocal
and represented by highly curved pathways within the full device
volume (Figure 6c). These WaveY-Net-based Poynting vector
maps match well with those calculated from an FDFD solver
(Supporting Information, Section 15), demonstrating the
capability of WaveY-Nets to produce accurate full field
calculations. Remarkably, the WaveY-Nets used for multilayer
devices have the exact same network structure and training set
size as when it is used for single-layer devices even though the
multilayer devices define a significantly higher dimensional
problem.We attribute this dimension-robustness to the fact that
WaveY-Net is learning the local relationship constrained by
Maxwell equation between geometry and field response, which
does not depend on the problem dimension.

■ DISCUSSION
Weperform furtherWaveY-Net benchmarking with two types of
data-only UNets: the previously discussed two channel H-only

network that outputs magnetic field maps and a six channel full-
EM network that outputs field maps for all electromagnetic field
components (see Supporting Information, Section 10 for more
details). With the H-only data-only UNets, we previously
observed that the lack of Maxwell regularization led to
inaccurate electric field maps. In spite of these shortcomings,
one might hypothesize that these field inaccuracies could be
mitigated by simply increasing the data set size. This “big data”
mentality arises from trends observed in computer vision and
natural language processing tasks, where it is observed that
models generalize better with less overfitting when larger
training sets are used.74−77 To investigate the impact of training
set size on network performance, we train data-only UNet and
WaveY-Net models with the same network architecture on data
sets with a total of 5k, 10k, 20k, 30k, 60k, and 100k random
training devices. For the purposes of this benchmark task, we
consider a more specialized training set comprising silicon
devices with four nanoridges per unit cell and a height of 325 nm.

Comparisons of the magnetic wave equation residue and full
field MAE as a function of training set size for each model is
presented in Figure 7a,b. We find that WaveY-Nets produce
magnetic wave equation residue values that are approximately
10× lower than those from the data-only UNets, independent of
the training set size. Furthermore, the residue value from the
data-only UNet trained with 100K data is similar to the residue
value from WaveY-Nets trained with only 5K data (Figure 7a).
Without explicit Maxwell regularization, data-only UNets are
not able to learn wavelike correlations between neighboring
pixels, even in the limit of large training sets. An examination of
the full field MAE trends in Figure 7b indicates that even with
100K training data, the data-only UNet still has limited accuracy,
with normalized field MAEs of approximately 10%. In addition,
WaveY-Net requires approximately 10× less data than the data-
only UNet to produce total electromagnetic field maps with
similar MAE. More discussions are in the Supporting
Information, Section 7. This relative reduction in training data
preparation is critical for our application, where the generation
of training data consumes the vast majority of computational
resources used for algorithm development. We also note that the
amount of training data and trade-off between training set size
and field prediction accuracy are dictated by the final
application, and we selected 30K as the training set size for
this study as it gives low enough error for the fields as to enable
accurate and stable device optimization runs. Using less training

Figure 7. Benchmark numerical experiments with WaveY-Net. (a) Plot of magnetic wave equation residue MAE versus training set batch size,
computed for WaveY-Net and a data-only UNet that outputs magnetic fields. (b) Plot of electromagnetic field MAE versus training set batch size,
computed for WaveY-Net and a data-only UNet that outputs magnetic fields. (c) Plot of electromagnetic field MAE vs total training set memory size,
computed for WaveY-Net and a data-only UNet that outputs the full electromagnetic fields. (d) Plot of electromagnetic field MAE versus the
hyperparameter α, computed for WaveY-Net with normalized LMaxwell and Ldata loss terms.
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data, such as 20K, does not meet the requirement for optimizers
used in this study (see Supporting Information, Figure S14), but
it might suffice for other applications that do not require as high
accuracy of the field prediction.

A comparison of WaveY-Net with a full-EM data-only UNet
shows that WaveY-Net has a performance advantage. When
both networks are trained with 30 000 training devices, the
normalized MAE of the full fields (see Methods), is 0.054 from
WaveY-Net while the MAE values from the data-only network is
0.056. This slight advantage exists in spite of the fact that
WaveY-Net uses nearly three times less total training data, as
quantified by data memory. The origin of this advantage is
clarified when examining the normalized MAE of the network-
outputted magnetic fields, which is 0.033 for WaveY-Net and
0.046 for the full-EM data-only UNet. This relatively large
difference arises because WaveY-Net learns data relationships
for a lower dimensional problem (i.e., two output channels
instead of six), allowing the trained network to display improved
accuracy and generalizability. These trends suggest that the full
WaveY-Net fields can be further improved, in a manner that far
surpasses the capabilities of the full-EM data-only UNet, by
improving the method for calculating electric fields from
magnetic fields.

A more fair comparison, from the point of view of network
training, is to benchmark both networks using the same amount
of training data as quantified by data memory. Practical limits to
maximum usable training set memory are bounded by hardware
limitations such as disk capacity and GPU memory. In addition,
the speed and computational resources used for network
training, which involve data processing in CPUs and data
transferring between GPUs and CPUs, directly correlate with
training set memory. The results are summarized in Figure 7c
and show a clear performance improvement with WaveY-Net. It
indicates that for a fixed amount of training data memory, it is
always advantageous to have a more diverse data set with less
information contained by each data point and to use physical
relationships to compute the rest of the information, instead of
having the network learn all the information with a reduced data
set size.

Finally, we examine the impact of the weighting factor α in eq
3 to further elucidate the network training process and the
relative roles of LMaxwell and Ldata. On one hand, hybrid networks
trained with a strong LMaxwell weighting can be treated as physics-
informed neural networks that predominantly train by solving
differential equations but use data to help with network
convergence. On the other hand, hybrid networks that use a
strong Ldata weighting can be treated more as conventional data-
based networks that use Maxwell regularization to push the
outputted data to be more wavelike. We train a series of WaveY-
Nets in which LMaxwell is normalized each iteration to have the
same magnitude as Ldata and α is fixed to a chosen number. The
plot of the resulting full field MAE values for α ranging from 0 to
1 is shown in Figure 7d and indicates that the best performing
networks use an α between 0.2 and 0.6. As such, WaveY-Net
most effectively operates as a data-based network that uses
physics to regularize the quality of outputted fields. This biasing
toward data-based loss is reflected in our observation that while
it is straightforward to effectively train a network only with Ldata,
the network does not properly converge when trained only with
LMaxwell (see Supporting Information, Section 3). Training
methods that use stronger LMaxwell weighting are of interest
because their proper implementation may reduce the reliance of
large training data sets. Concepts such as the incorporation of an

active weighting scheme for boundary condition contributions
may improve the performance of those networks,78 and they will
be a topic of future study.

In summary, we show that WaveY-Net, which trains using
data and physical constraints, can serve as effective electro-
magnetic solvers. These surrogate simulators can produce
accurate field solutions for classes of freeform devices
comprising four silicon nanoridges, and they can be directly
used in local and global optimization algorithms that search
within this design space. An important feature of our approach is
that it is data efficient, training with only a single field type and
taking advantage of the explicit relationships between electric
and magnetic fields fixed by Maxwell’s equations. This feature
enhances the generalization capabilities of the network through
optimal use of the network capacity. This is a particularly
important consideration when adapting UNets to large, three-
dimensional systems, where the generation and utilization of
large training data sets is extremely computationally intensive.
While our network considers devices with fixed topology and
material type, we anticipate that ensembles of WaveY-Net
solvers can be collectively used to solve more general classes of
photonics problems.We also anticipate that for applications that
require accuracy convergence quantification, WaveY-Net can
serve as a preconditioner for a rigorous Maxwell solver,
providing a compromise between acceleration and accuracy.79

■ METHODS
Network Architecture. WaveY-Net is implemented by

using a traditional encoder-decoder UNet architecture consisted
of six successive residual blocks, with each residual block
containing six periodic-convolutional layers followed by batch
normalization and a leaky rectifying linear unit (leaky ReLU).
The periodic-convolutional layers use zero padding for
horizontal boundaries and pads vertical boundaries using
columns from the opposite side to account for periodic
boundary condition. The number of convolutional kernels
doubles after each pooling layer in the encoder, which is
mirrored in the decoder. Two residual connections, each across
three convolutional layers, are implemented within the residual
block, which are proven to be beneficial for efficient
optimization, as well as higher accuracy especially for deep
networks.59 For the first two encoding blocks, nonuniform
maxpooling is used where the window size is (1 × 2).
Correspondingly, for the last two decoding blocks, nonuniform
Upsampling is implemented. Shortcut connections are utilized
between corresponding encoding and decoding blocks such that
the last leaky ReLU layer of the encoder is concatenated to the
input layers of the decoder. This has been proven to enhance the
reconstruction of finer features.59 Finally, the network produces
the output fields with two channels (or six channels) for the real
and imaginary part of the Hy field (or Hy, Ex, Ez fields). Detailed
schematic of UNet structure is shown in the Supporting
Information, Section 1.
Data Set Preparation. The neural network used to collect

performance statistics and to perform local and global device
optimization is trained using 27 000 examples and tested using
3000 examples. Both the training and test data sets are
composed of dielectric device structures with varying
permittivity of the dielectric metagrating, a variable number of
nanoridges per unit cell, and a varying ridge height. The
refractive index of the dielectric material of each device in the
data set is one of 11 values, ranging from that of anatase titanium
dioxide54 to that of polycrystal silicon,58 with the in-between
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values incremented by a constant step-size in dielectric constant.
The proportion of devices generated with each of the 11 possible
refractive index values was sampled in a manner that is directly
proportional to the permittivity constant. The number of
nanoridges within the metagrating unit cell is 1, 2, 3, and 4, and
the number of devices generated with each of these four values
scales with the exponential increase in geometrical complexity
with increasing nanoridge number. As such, 50, 2800, 10 150,
and 17 000 devices were generated for 1, 2, 3, and 4 nanoridges,
respectively. The 10 ridge heights are uniformly sampled from
293.75 to 350 nm with a step size of 6.25 nm.

TheHy
fwd andHy

adi field responses of the dielectric metagrating
unit cells were generated using the FDFD-based electro-
magnetic simulator Ceviche.17 Perfectly matched layers
(PMLs)80 are utilized in the vertical z direction, and periodic
boundary conditions are adopted in the horizontal x direction.
The metagrating device is placed at the center of the simulation
domain, leaving at least a wavelength of space from the PML to
ensure the integrity of its high absorbing performance. The
lower half of the simulation domain is set as silicon dioxide, and
the upper half is set as air. An infinitely large magnetic current
sheet is used for field radiation to simulate a plane wave source.
Only the fields and grating pattern shown in the red window in
Figure S2 are saved to generate the labels for WaveY-Net
training. The window is of size [256, 64] and contains five rows
of substrate pixels at the bottom of the window and seven rows
of pixels of air at the top. The simulation is set such that the
phase of the x component of the incident electric field is zero at
the lower edge of the window in forward simulation. For the
adjoint simulation, the source is set to ensure the phase of the y
component of the incident electric field is zero at the center
point of the upper edge of the window. A more detailed
discussion regarding the training set generation and Ceviche
setup is in Supporting Information, Section 1.
Training Procedure. All the models are trained for 200

epochs in batch sizes of 32. Adaptive Moment Estimation
(Adam)81 optimizer is used with an l2-regularization coefficient
of 3 × 10−3. A learning rate of 1 × 10−4 is applied, and an
exponentially decaying learning rate scheduler is used with γ =
0.98. The convolutional layer weights are initialized by default
using Kaiming Initialization.82 All the models are trained with
PyTorch version 1.8.1. We adopt a train-test split ratio of 9:1 for
all training processes.
Evaluation Metrics. Mean absolute error (MAE) is mainly

used as the evaluation metric for this study. For an individual
device, the normalized MAE of a certain field component is
calculated by first computing the l1-norm of the difference
between the predicted field matrix and its corresponding ground
truth, and then it is normalized through dividing by the mean
absolute magnitude of the ground truth field. Note that since the
field is complex (2 channel), the normalized MAE is first
computed for both the real part and the imaginary part, and the
average value between the two is taken. The normalized MAEs
of Hy, Ex, and Ez are all calculated in this manner. The
normalized MAE of E is computed by taking the average
between Ex and Ez. Similarly, the normalized MAE of the full
electromagnetic field is computed by taking the average between
all three field components. The normalized MAE of the wave
equation residue is calculated in the same way except that the l1-
norm is taken for the wave equation residue matrix computed
from Supporting Information, eqs S1, S2, and S13.The
normalized MAE of the entire set (Table 1 and Figure 7) is

evaluated by taking the mean value of the normalized MAE of
each individual device within the data set.
Near-to-Far-Field Transformation. Given the near field

profile of the electric field within the simulation window, we can
take a horizontal slice of the E-field E(x, z = z1) and compute the
far-field of the outgoing plane waves cq as a function of diffraction
channel qwith the near- to far-field transformation as below (see
Supporting Information, Section 5 for the derivation):

=c
a

E x z e e e1
( , )q

x

ik x iqKx ik z
1

x z q,inc , 1

where a is the grating period, kx,inc is the x-component of the
incident wave vector, K is the spatial frequency of the grating
computed as =K

a
2 , and kz,q is the z-component of the

outgoing wave vector of diffraction channel q. To calculate
diffraction efficiency, the Poynting vector flux of the diffracted
wave is integrated and divided by that of the incident field.83

Adjoint Gradient Calculation. To calculate the adjoint
gradient used in the adjoint variable method, the adjoint phase is
first calculated given the forward electric field. More specifically,
the electric field maps from the forward simulator are used to
calculate the far-field response in the desired diffraction order,
Ẽfwd, using the near- to far-field transformation. This far-field
metric is then used to calculate diffraction adjoint phase, which is
computed as θadj = angle(Ẽfwd* ), where Ẽfwd* is the complex
conjugate of Ẽfwd. The voxel-wise gradient is computed as
Re(Efwd·Eadj·eiθadj), which is a 64 × 256 matrix. It is then turned
into a vector with dimension 1 × 256 by taking summation along
the z-axis. It is cropped with a filtering operation where positive
gradient is set to zero when the corresponding region is already
the high-index material (dielectric ridge in this case), and
negative gradient is set to zero when the corresponding region is
already the low-index material (air in this case). Lastly, the
magnitude is normalized by dividing by one-half of the maximal
magnitude. The boundary gradients are calculated according to
the methods described in refs 66 and 67.
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