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Numerical Optimization Methods for Metasurfaces

Mahmoud M. R. Elsawy, Stéphane Lanteri,* Régis Duvigneau, Jonathan A. Fan,
and Patrice Genevet *

In recent years, metasurfaces have emerged as revolutionary tools to
manipulate the behavior of light at the nanoscale. These devices consist of
nanostructures defined within a single layer of metal or dielectric materials,
and they offer unprecedented control over the optical properties of light,
leading to previously unattainable applications in flat lenses, holographic
imaging, polarimetry, and emission control, amongst others. The operation
principles of metaoptics include complex light–matter interactions, often
involving insidious near-field coupling effects that are far from being
described by classical ray optics calculations, making advanced numerical
modeling a requirement in the design process. In this contribution, recent
optimization techniques used in the inverse design of high performance
metasurfaces are reviewed. These methods rely on the iterative optimization
of a Figure of Merit to produce a final device, leading to freeform layouts
featuring complex and non-intuitive properties. The concepts in numerical
inverse designs discussed herein will push this exciting field toward realistic
and practical applications, ranging from laser wavefront engineering to
innovative facial recognition and motion detection devices, including
augmented reality retro-reflectors and related complex light field engineering.

1. Introduction

During the last decade, metasurfaces have received lots of at-
tention due to their ability to precisely control the phase, ampli-
tude, and wavefront of light. These light–matter interactions are
mediated by ensembles of subwavelength meta-atoms, made of
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plasmonic or high dielectric refractive
index materials, which have thicknesses
within the range of the operating wave-
length. The design of metasurfaces is
generally achieved using the following
two approaches. In the first approach,
which we will refer to as the direct
design approach, a rigorous full wave
electromagnetic solver is used to study
different classes of meta-atoms. Large
sets of key meta-atom parameters are
parametrically swept to create meta-atom
libraries, and ensembles of meta-atoms
from these libraries are assembled to-
gether to create metasurfaces with given
desired optical responses. This method
works well for certain applications. How-
ever, it does not incorporate near-field
electromagnetic coupling effects be-
tween neighboring meta-atoms and does
not generalize to large area, freeform
devices.
The second approach is inverse de-

sign. With this approach, the desired op-
tical response is defined as an objective
cost function (for example, the deflection

or focusing efficiencies) and the inverse problem solves for the
shape and dimensions of the metasurface in a manner that
maximizes the cost function value. In principle, the inverse
design approach can account for near-field interactions by opti-
mizing relatively large metasurface regions at a time. However,
it requires rigorous and computationally efficient optimization
techniques that can deal with large parameter spaces and multi-
objective cost functions. There are two main classes of optimiza-
tion methods that have currently been used in inverse design
of metasurfaces: gradient-based algorithms and gradient-free
approaches.
Gradient-based methods depend strongly on the initial guess

of the solution and are efficient in finding local optima. Gradient-
based method require the knowledge of the derivatives of the
cost function with respect to design parameters, which can be
evaluated analytically sometimes, or approximated numerically
in most cases.[1] These methods have a lengthy history in
metasurface design and were used early in the field[2,3] to create
devices that maximized light diffraction at visible wavelengths.
Today, several descentmethods, ranging from steepest-descent to
quasi-Newton methods for both constrained and unconstrained
problems, have been applied to metasurfaces. In this short
review, we focus on the most common methods used recently
in the literature, including the objective-first[1,4] and topology
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optimization algorithms, which have proven to be efficient and
rigorous design methodologies.[4–8]

Gradient-free approaches are capable of capturing global
optima,[9] albeit for a limited number of parameters, thereby over-
coming the local minimum trapping issue of gradient-based al-
gorithms. In other words, with gradient-free global optimization
techniques, the final optimized results are not influenced by the
initialization of the optimizer. In addition, some of these algo-
rithms can deal with discrete optimization parameters and non-
differentiable objective functions, which are conditions that are
generally not handled by gradient-based algorithms.Without gra-
dients to help guide the optimization, convergence with global
optimization algorithms is often considerably slower than con-
vergence with gradient-based algorithms. To date, several global
optimization techniques have been proposed in the context of
metasurface design. To properly deal with the extensive (often
discrete) parameter space and the existence of several local op-
tima, themajority of inverse designmethods of interest for meta-
surface design are stochastic and include genetic algorithms and
evolutionary strategies.[10–18]

In addition to the methods discussed above, emergent ap-
proaches, including artificial neural networks and Bayesian opti-
mization, have the potential to uncover surprising new metasur-
face designs.Wewill highlight in this review the key ideas behind
these techniques and illustrate their versatility and advantages for
the optimization of practical metasurfaces.[19,20]

We note there have been a number of reviews about inverse de-
sign for nanophotonics that have been published recently.[21–23]

In Ref. [21], the authors focus on inverse design in the frame-
work of deep learning. In Ref. [22], the authors provide gen-
eral guidance for different optimization techniques, indicating
their performances with respect to a range of nanophotonics
problems. In Ref. [23], the authors present a collection inverse
design techniques in nanophotonics and their specific applica-
tion to nonlinear optics, integrated optics, and topological pho-
tonics. What differentiates our review from the previous one
is that we we focus here our on numerical methods used for
designing metasurfaces, providing a simple and clear illustra-
tion of these techniques and demonstrating their advantages
and drawbacks. Indeed, we present an overview (with a dis-
cussion on the numerical implementation) of the main and
most common optimization methods for metasurface designs.
We do not intend to present an exhaustive literature review on
nanophotonic structures optimized using inverse design tech-
niques. This topic has already been covered in recently published
works.[21–25]

The article is organized as follows. In Section 2, we discuss
the main gradient-based optimization techniques used in the
metasurface literature: the objective-first and topology optimiza-
tion approaches. In Section 3, we introduce the most popu-
lar gradient-free techniques, that is, genetic algorithms, particle
swarm optimization, and covariance matrix adaptation evolution
strategy. In Section 4, we give a simple and practical introduc-
tion to artificial neural networks and how they can be applied to
the inverse design of metasurface devices. In Section 5, we intro-
duce the concept of Bayesian optimization and discuss its appli-
cation to inverse design for nanophotonics. Finally, in Section 6,
we discuss methods to incorporate robustness into the optimiza-
tion process.

2. Gradient-Based Optimization Techniques

2.1. Objective-First Algorithm

The objective-first algorithm is a widely used optimization tech-
nique in nanophotonics.[1,9] As described in Chapter 6 in Ref. [1]
and in refs. [6, 26], the algorithm begins by defining quantities to
optimize. After specifying an objective or target function describ-
ing these quantities, the algorithm searches for the spatial dis-
tribution of dielectric material that maximizes this target while
satisfying Maxwell’s equations as accurately as possible.[6] For
most of the applications discussed in this manuscript, we con-
sider nonmagnetic materials, such that the algorithm searches
for permittivity distributions within a design window.
Following the notations in Chapter 6 of Ref. [1] and assuming a

time-harmonic dependency of the electromagnetic field, we write
the general optimization problem as

minimize
x,p

f (x)

subject to A(p(x))x − b(p(x)) = 0,
(1)

A change of variables is applied to match this problem with
electromagnetics: H → x, 𝜖−1 → p such that A(p) = ∇ × 𝜖−1∇ ×
−𝜇0𝜔2, and b(p) = ∇ × 𝜖−1J. J is the current density vector, 𝜇0 is
the vacuum permeability, and 𝜔 is the angular frequency. Equa-
tion (1) indicates that the minimization of the target function,
achieved by varying H and 𝜖−1 simultaneously, is performed
while satisfying the wave equation.[1] Note that Equation (1) is a
priori a non-convex problem, since this requires solving for p(x)
and x simultaneously, which is in general a difficult problem.
The objective-first algorithm splits the optimization problem

into two convex subproblems. One of these subproblems deals
with the fields: given the permittivity, it solves for the usual wave
equation and determines the fields that minimize the residual.
The second subproblem solves for the permittivity distribution
given constant electromagnetic fields. After this minimization,
both subproblems are then merged together[1]:

Loop:

minimize
x

‖‖ A(p)x − b(p)‖‖2
subject to f (x) = fideal,

minimize
p

‖‖ B(x)p − d(x)‖‖2
subject to pmin ≤ p ≤ pmax,

(2)

fideal is the ideal performance for function f (x). We see that
the first subproblem tries to converge to an ideal solution that
satisfies the wave equation up to some residual. The second sub-
problem, with B(x) = ∇ × (∇ ×H) − ∇ × J and d(x) = 𝜇0𝜔

2H,
seeks to solve for the permittivity with the condition that it takes
continuous values. In practice, the optimization domain that cor-
responds to the physical space containing the nanostructures is
decomposed into equally spaced pixels, each specified by a given
local permittivity value. The optimization process is iteratively
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Figure 1. Optimized devices using the objective-first algorithm. a) Schematic representation of a wavelength demultiplexing grating coupler device.
This device is illuminated with a normally incident light from above, and splits the light (according to the wavelength). b) The optimization process
for directional modal coupling. The optimization process supposes, during the first evaluation round, that the permittivity varies in a continuous way
(stage 1). In the second evaluation round, the permittivity is converted to a binary-set representation between Si and air (stage 2). The right column
figure is taken from Ref. [5], in which several metadevices have been optimized using the objective-first algorithm. Here, the desired optical functionality
is defined by a set of input and output conditions at the boundaries of the design space (black dots). The top figure represents a polarization splitter,
the middle one is a bending device, and the bottom one, a device to convert an incident plane wave into lens to focus light at a single focal point. (a,b)
Reproduced with permission.[7] Copyright 2015, Springer Nature. (c) Reproduced with permission.[5] Copyright 2018, Springer Nature.

employed until convergence, and until it reaches a final structure
that reasonably satisfies the objective.[1,6,7,27,28]

To summarize, and as it is mentioned in Ref. [28], the ob-
jective first algorithm ingeniously splits Equation (1) into two
convex sub-problems as shown in Equation (2), and uses local
optimization approaches based on convex optimization[29] to
effectively explore the huge parameter space. With respect to
classical gradient-based optimization methods, which stick to
physically realistic solution able to satisfy the wave equation, the
objective first method treats each sub-problem sequentially, em-
ploying the alternating directions method, solving for p and x[30]

iteratively. The resolution of the first sub-problem optimizes the
performance but does not check if the solution satisfies the wave
equation. This “violation,” as discussed in refs. [27, 28], is regular-
ized through the minimization of the second sub-problem. The
first experimental demonstration of the objective first algorithm
has been reported in Ref. [28], where, the objective first algorithm
is followed by an adjoint-based gradient method to finely tune
the structure[28] by implementing classical steepest-descent al-
gorithm. It has been shown that the final device performs better
than those optimized using only adjoint optimization method.
For more details about the mathematical implementation of
this method, we refer to Chapter 7 and Appendix. C in Ref. [30]
together with Refs. [27, 28].
It is important to distinguish this objective first optimization

method from other topology optimization (TO) and genetic
algorithm (GA) methods discussed in the next paragraph.
Objective first solutions are constrained to satisfy Maxwell
equations using convergence process of initially nonphysical
solutions while other methods, including TO and GA, optimize

the solutions satisfying Maxwell equation all the way along the
optimization procedure.
We note that since the algorithm relies on a gradient-based

technique, it does not directly apply to structures comprising dis-
crete representations of the permittivity. As such, a subsequent
stage of discrete optimization, based on a binary representation
of the structure, is required and achieved using a separate opti-
mization method (see refs. [5, 6, 26] for more details). The latter
step is of critical importance when considering practical experi-
mental device realizations.
In Figure 1, we present several examples of nanophotonic

devices optimized using this objective-first algorithm. In the first
column, a demultiplexing grating waveguide that splits an inci-
dent free-space Gaussian beam into left-going O-band (1300 nm)
and right-going C-band (1550 nm) waveguided modes has been
optimized.[7] The fabricated device has a measured splitting ratio
of 17 dB at 1310 nm and 12 dB at 1540 nm, whereas the designed
values at these wavelengths were 19.6 and 22.2 dB. In the second
column of Figure 1, the objective-first algorithmwas used to opti-
mize all-dielectric devices with different functionalities[5] includ-
ing polarization splitting (top figure), light deflection (middle fig-
ure), and light focusing. Several other nanophotonic devices have
been optimized using this technique, see for example Ref. [1] for
optical cloaks, Ref. [6] for the optimization of a broadband optical
diodes and Ref. [26] for the optimization of a 1D grating coupler.
It is worth mentioning that in most of the reported cases, the

agreement in efficiency between optimized devices and the fab-
ricated ones is quite low. Discrepancies are generally related to
the difficulties in properly addressing the change from continu-
ous to the binary representation. To correctly binarize designs in
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a precise way, subsequent efficient optimization techniques that
can mimic this clear-cut simplification must be considered.[26]

2.2. Topology Optimization

In this section, we will review a second class of optimization
methods, namely topology optimization (TO), used in the inverse
design of nanophotonic devices.[31] TO historically has been ap-
plied to a broad range of physical systems such as mechanical
structures, MEMS, and materials design Ref. [32], and it was in-
troduced to nanophotonics in the early 2000s in the context of
photonic crystal-based technologies.[33,34] More recently, it has
been applied to the design of linear[35] and nonlinear[36] metasur-
faces. TO is based on a gradient-based algorithm that is able to
produce freeform geometric configurations. This method works
as a local optimizer, starting from an initial guess for the config-
uration of the device and then undergoing an iterative process to
achieve a locally optimal configuration.[35]

With TO, the device is subdivided into an ensemble of pixels,
for which each pixel is associated to a design variable such as the
dielectric permittivity. The dimensions of these pixels can be as
small as a few square nanometers for visible light devices, such
that the final devices can comprise smooth, curvilinear shapes.
Often, the goal is to produce a final device that consists of di-
electric materials with discrete permittivity values, such as an
isotropic semiconducting or insulating material with air voids.
However, as TO is a gradient-based algorithm, the optimization
is required to be performed on a continuum of permittivity val-
ues. Consider as an example a final device that comprises two
dielectric materials with permittivities, 𝜖1 and 𝜖2. These permit-
tivities can be normalized to take values of “0” and “1,” respec-
tively, and the actual parameter undergoing optimization will be
a continuous parameter 0 ≤ s ≤ 1.[31,32] This continuous repre-
sentation leads to optimized regions with intermediate dielectric
values between the two desired discrete permittivities. To ensure
that TO produces fully discrete devices, terms can be added to the
objective function that penalize the presence of grayscale dielec-
tric values.[31,32]

We present below a general and quick overview of the opti-
mization problem in the framework of TO (see also refs. [31, 36]).
The optimization problem reads[4]:

minimize
𝜖

F(E, 𝜖)

subject to G(E, 𝜖) ≤ 0, 0 ≤ 𝜖 ≤ 1.
(3)

Here, 𝜖 is the normalized dielectric permittivity associated to
each pixel in a specific volume. The values of 𝜖 are related to the
position-dependent dielectric profile via some linear interpola-
tion function.[36] Note that both the objective function (F) and the
constraints (G) are a function of the permittivity and the electric
field E, which is a solution to Maxwell’s equations. Equation (3)
can be solved usingmathematical techniques such as theMethod
of Moving Asymptotes.[31] However, in the framework of TO,
the derivative of the objective function and the constraints with
respect to 𝜖 have to be computed at each pixel. This can be treated
using methods such as adjoint variable method.[31,35,36]

Metagrating devices that maximize deflection efficiency at
high deflection angles and near-infrared wavelengths have
been optimized using TO and demonstrated experimentally in
Ref. [37] The optimization algorithm starts with a random and
continuous distribution of permittivity values between the values
of Si and air, and these permittivity are iteratively optimized in a
manner that optimizes the cost function value. As can be seen
from Figure 2a, the gray scale values of the dielectric constant
are pushed toward air or Si as the optimization proceeds, which
is driven by the use of penalty terms in the cost function. As a
result, final devices have a binary layout of Si in air. These de-
vices are able to achieve high efficiencies due to non-trivial mul-
tiple scattering effects mediated by the presence of high order
optical modes in high contrast dielectric structures.[38,39] TO has
been readily extended to other variants of periodic diffractive op-
tical structures, including those exhibiting ultra-high anomalous
refraction[40] and the diffraction of different wavelengths to dif-
ferent diffraction angles.[41]

TO-based metasurfaces have also been extended to the design
of wavelength-scale scatterers with defined scattering directions
and phases, as shown in Figure 2b.[42] The final devices comprise
single crystal silicon,[43] scattering light at visible wavelengths
with strong directionality in the desired direction, in a process
that is mediated by strong near-field interactions between nanos-
tructures. These wavelength-scale building blocks can be stitched
together to produce high efficiency aperiodic metasurfaces, such
asmetalenses. Aperiodicmetasurfaces have also been considered
in refs. [4, 36], in which efficient metalens devices and photonic
fibers for nonlinear frequency conversion are optimized using
TO. However, near field coupling is crucial and highly affects the
performance of the final optimized design. In Ref. [44], the au-
thors introduced an overlap technique to their topology optimiza-
tion approach to take into account the near field coupling from
neighbouring unit cells. They applied their technique to optimize
a large-scale metalens, demonstrating higher efficiency with re-
spect to the solution obtained with the classical local approxima-
tion technique.[45]

The influence of the initial guess (initial geometry) on the over-
all performance of the optimized design has been discussed in
Ref. [35]. It is shown that conventional metasurface devices serv-
ing as starting points for optimization do not produce highly ef-
ficient topology optimized devices. Instead, random initial guess
geometries have the potential to yield final devices with ultrahigh
efficiencies (see right column in Figure 2).

3. Gradient-Free Optimization Techniques

3.1. Genetic Algorithm

A Genetic Algorithm (GA) is a metaheuristic inspired by the pro-
cess of natural selection that belongs to the larger class of evo-
lutionary algorithms (EA). GAs are commonly used to generate
high quality solutions to optimization and search problems by re-
lying on bio-inspired operators such as mutation, crossover, and
selection. In a GA, a population of candidate solutions to an opti-
mization problem, called individuals, creatures, or phenotypes, is
evolved toward better solutions. Each candidate solution has a set
of properties (i.e., its chromosomes or genotype) that is iteratively
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Figure 2. Metasurface design using topology optimization. a) Metagrating efficiency as a function of iteration number. The insets show the dielectric
distribution in the course of the optimization process. Reproduced with permission.[37] Copyright 2017, American Chemical Society. b) Design of a
wavelength-scale scatterer with a scattering direction of 20 degrees and phase response of 45 degrees. Reproduced with permission.[42] Copyright 2019,
Springer Nature. c) Topology-optimized metagratings designed using different initial dielectric distributions. Reproduced with permission.[35] Copyright
2017, Optical Society of America.

mutated and altered. Traditionally, solutions are represented in
binary as strings of 0s and 1s, but other encoding methods such
as mixed-integer heuristics, have been proposed.[46,47] GAs can
effectively deal with multiobjective optimization problems and
multimodal functions.[48] The capabilities of GAs for optimiza-
tion problems involving electromagnetic waves have been clearly
demonstrated in several works.[10,48–51] More recently, GAs have
been applied to metasurface design.[11,12,14]

Here, we summarize the mains steps of GA and review some
recent works on the development and application of GAs for de-
signing efficient and practical metasurface devices. A GA algo-
rithm can be summarized as follows:

• Initial generation. AGA starts by creating a number of random
candidate solutions (e.g., different metasurface designs). Each
design (solution) is characterized by a chromosome that com-
prises the optimization parameters, such as the device width,
height, period of the gratings, etc. Each parameter in the chro-
mosome is coded by genes. Very often, this coding is binary
value-based (0 or 1), but alternative approaches are possible
as well. Each chromosome in the initial generation is associ-
ated with a value of a so-called fitness function (for example,
the transmission or reflection coefficient). Then, the chromo-
somes are ranked according to their fitness function value.

• Selection. After ranking each of the chromosomes in the cur-
rent generation according to their fitness function values, one
needs to select the most promising chromosomes to be used
for producing the next generation (i.e., survival of the fittest).
For instance, one can decide that only 50% of the chromo-
somes that are closer to the target fitness value are kept while
the rest of the chromosomes are discarded. The selected chro-
mosomes are considered as parents and are used to obtain the
next generation of devices. The next step consists inmating the
parents to generate new children. Differentmating techniques
can be applied, for instance, a mating between devices ordered
within the ranking list or random mating between devices.

• Crossover and mutation. The objective of these two operators
is to generate two children from two parents. The question is:
how do we generate the children, which correspond to new de-
signs? One method is the basic one-point crossover operator,

in which a random chromosome location is first chosen. Then,
the chromosome of child 1 consists of an initial chromosome
segment from parent 1 spanning the start of the chromosome
to the random location, followed by the chromosome segment
from parent 2 spanning the random location to the end of the
chromosome. The chromosome of child 2 has a similar struc-
ture, except that it starts with a chromosome segment from
parent 2 followed by one from parent 1. The the probability of
crossover should lie between 0.6 and 0.8).[48] The next step is
to apply a mutation operator, in which each gene in the chro-
mosome of an offspring is randomly changed. In case of a bi-
nary gene representation, each “1” becomes “0” and each “0”
becomes “1” upon mutation. This mutation operation should
occur at low probability, between 0.01 and 0.08.[48] Figure 3,
represents an example for the crossover mechanism using a
binary representation of the parameters in the chromosomes.

• Now the children replace the parents and one has the same
number of chromosomes (devices) as in the previous genera-
tion. Then, one evaluates the fitness function for each chromo-
some in the new generation using an electromagnetic solver.
The GA can then continue by selecting the survivors in the
new generation. The termination of the algorithm can depend
either on an appropriate convergence threshold or a number
of iterations (generations).

General considerations to implementing the algorithm in-
clude the following:

• The representation of each parameter in the chromosome. To
operate effectively, GAs require the use of properly defined
coding schemes thatmapmetasurface parameters to genes.[48]

Note that with respect to binarization of the dielectric values
obtained after TO, as discussed previously, the purpose of us-
ing binary encoding in GA algorithm is to assign the physical
information to a sequence of bits in the chromosome, and do
not readily correspond to the value of the material parameters.
Themost commonmethod is to use a binary representation in
which each of the parameter values is represented by a binary
analog, such that a string of bits represents each parameter.
The evaluation of the cost function, which is determined by
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Figure 3. Illustration of the crossover mechanism in a GA for two chromosomes with a binary representation of the parameters (genes).

performing a fullwave electromagnetic simulation, requires a
protocol in which the binary representation of the parameters
is converted into real physical values. According to Ref. [48],
one can consider the following decoding method for any pa-
rameter p in the optimization problem:

p =

(
pmax − pmin
2N − 1

N−1∑
n=0

2nbn + pmin

)
, (4)

pmax and pmin represent the upper and lower limits of p, re-
spectively, and represent boundaries to parameters (e.g., fea-
ture size, refractive index, etc.) describing the physical device.
N is the number of bits in the binary representation of the pa-
rameter p and bn is the n − 1th bit. The role of Eq. (4) is to scale
the binary representation of the parameter p to a real value in
a manner that takes into account its lower and upper limits.[48]

• Number of chromosomes. It is also important to have a suf-
ficient number of chromosomes at each generation to ensure
sufficient diversity in the gene pool. It has been shown recently
that more than 100 bits can be used, as discussed in refs. [15,
17]

• Generating the random list of bits. During the initial genera-
tion of parent chromosomes, the bits in the chromosomes are
randomly generated. In many cases, a Poisson distribution is
used for this task.[10]

• Convergence and probability of mutation. Mutation is impor-
tant to explore the parameter space and avoid local maxima.
It has been shown that mutating 1% of the chromosome bits
at each GA iteration is a reasonable choice of mutation rate
that enables sufficient exploration of the design space.[48] In
order to terminate the algorithm, one needs to either specify
the number of total generations or specify a threshold value for
the fitness function. For example, for a transmissive metasur-
face, one can set a target threshold value for the transmission
coefficient at a given frequency. As the behaviour of a GA algo-
rithm is stochastic, it is necessary to run the algorithm several
times to confirm its convergence to a global maximum. For
cases where different solutions are obtained for different opti-
mization runs, decreasing the number of mutations or adding
some physical constraints based on the problem at hand can
improve the convergence.[10]

More resources on the implementation of GAs to electromag-
netics problems are discussed in refs. [10, 48, 49, 52].
Figure 4 highlights important works that have used GAs

for the design of metasurfaces. The GA has been applied to

enhance the transmission and increase the deflection angle for
all-dielectric metasurfaces made of Si nanodisks by optimizing
two parameters: the radius and thickness of the nanodisk[12]

(see Figure 4a). The authors show theoretically that transmis-
sion efficiencies up to 87.2% are obtained in visible spectrum
(580 nm) and up to 82% at the telecommunication wavelength
(1550 nm).
Another application of GAs is discussed in Ref. [14] for the

design of a highly efficient beam deflector in the visible regime
using an extended unit cell approach. The building block cell
is made of elliptical nanoantennas, and the optimization is per-
formed for five parameters: the minimum and maximum radii
of the ellipses, the x and y position for the center of the el-
lipses, and the orientation angle of themajor axes (see Figure 4b).
The authors have compared their GA variant with another bio-
inspired algorithm called the Artificial Bee Colony (ABC), which
is a global optimization technique based on the concept of swarm
intelligence.[14] They conclude that the two methods provide
nearly the same efficiency; however, the ABC method converges
faster to the global optimal solution.
Recently, another class of metasurfaces, referred to as binary

metasurfaces, has been introduced. Binary metasurfaces are
described in Ref. [59] and are based on a binary coding of the con-
stituent meta-atoms (see Figure 4c,d). As systems that explicitly
utilize a binary coding scheme, they are naturally amenable to
GA design methods. These concepts have been applied generally
to the tailoring of scattering patterns and specifically to the reduc-
tion of device radar cross sections. With this class of devices, the
optical response is specified by a meta-atom coding sequence.[59]

For example, a 1-bit coding describes a sequence of binary coding
particles that utilize elements represented by “0” and “1.” The
“0” and “1” represent meta-atoms with “0” and “𝜋” phase shift
responses, respectively. A 2-bit binary representation can also
be considered: “00,” “01,” “10,” and “11” represent meta-atoms
with “0,” “𝜋∕4,” “𝜋,” and “3𝜋∕4” phase shifts, respectively.[58,59]
The material choice and dimensions of each meta-atom are indi-
vidually optimized prior to GA optimization of the array coding
sequence,[58,59] as shown in Figure 4c,d. In this case, this ap-
proach does not properly account for near-field coupling between
meta-atoms, which limits the overall device performance.
GAs have also been used to enhance light-matter interactions

such as magnetic effects in the visible regime. In Ref. [60],
the authors identified the optimal configuration of a binary
configuration, made of Si and air, which maximizes the mag-
netic field intensity. The geometry and its binary representation
are shown in Figure 5a, in which each “1” represents Si
rectangular meta-atoms and each “0” represents an air void. As
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Figure 4. Examples of optimized metasurface devices using a GA or its adaptive form. The readers can refer to refs. [21–23] for a broad overview
of optimized configurations based on GA or, more generally, on advanced evolutionary strategies as in refs. [53–57]. a) An all-dielectric metasurface
configuration made of Si nanodisks. The parameters to be optimized were the radii and the thicknesses of the nanodisks. The authors demonstrated an
optimized beam deflector metasurface with nearly 82% at the telecommunication wavelength. b) A 3D sketch of a beam deflector metasurface made of
TiO2 elliptical nanoantennas. (a,b) Reproduced with permission.[35] Copyright 2017, Optical Society of America. The parameters to be optimized were
the minimum radius, maximum radius, x and y coordinates of the ellipse in the unit-cell, and the orientation angle of the major axes. The authors showed
that a 60% efficiency can be obtained for beam steering with an angle as large as 50 degree at 𝜆 = 520 nm). c,d) example of an optimized metasurface
geometry with its corresponding binary representation. (c,d) Reproduced with permission.[58] Copyright 2018, Optical Society of America. e) A plasmonic
metasurface comprising a backside Au mirror (yellow bottom region) and Si spacer (blue region) and a binary gold pattern (top yellow regions). This
geometry has been used to optimize a beam reflector metasurface with nearly 92% of performance efficiency. Reproduced with permission.[11] Copyright
2019, Springer Nature. f) A reconfigurable metasurface pattern designed using a GA in order to switch from highly transmissive mode with efficiency
(80%) to highly absorptive modes with efficiency as high as (76%). Reproduced with permission.[13] Copyright 2017, Optical Society of America.

an initial step, a random population consisting of 20 geometries
is considered, each simulated using an electromagnetic solver
to compute the magnetic intensity enhancement at the center
of the geometry (see red point in Figure 5a). The five best
geometries, providing the highest magnetic enhancement, are
kept and used to generate the new population. This process
is repeated until an optimized geometry is obtained. For a
GA run of nearly 350 generations, with each generation cod-
ing 20 different geometries, 7000 independent simulations
are performed using an electromagnetic solver. The authors
conclude that the magnetic power density obtained using the
optimized geometry (see Figure 5) can be increased by a factor
of five, compared to state-of-the-art dielectric nanoantennas. In
similar circumstances, the authors in Ref. [15], employed GA to
improve the near field intensity in a plasmonic configuration.

It has been revealed that the optimized geometry exceeds the
state of the art reference plasmonic geometry by more than
a factor two (see Figure 5d–f). For more details about the im-
plementation of the inverse design, the readers can refer to
Ref. [15].
Various devices have been recently optimized using GA

or using some advanced evolutionary strategies as shown
in refs. [53–56, 61]. To highlight the basic concepts of the
numerical optimization methods and mention briefly some
possible applications, the readers can refer to recent re-
view works about metasurfaces and nanophotonics (refs. [21–
23]), discussing in details different applications relying on
inverse design.
So far, our discussion has focused on the optimization of only

a single target in the objective function. A more challenging
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Figure 5. a) Binary matrix representation of a metasurface geometry that enhances the magnetic field intensity at the center of the structure (red dot in
right and bottom figure). Each “1” represents a rectangular nanostructure made of Si while each “0” corresponds to an air void. b) Magnetic intensity
enhancement for the distribution of parent devices as a function of generation number. Each generation contains 20 individual devices. c) The magnetic
field distribution of the optimized geometry after 248 generations. (a–c) Reproduced with permission.[60] Copyright 2019, Wiley–VCH. d–f): another
example to illustrate the usefulness of utilizing evolutionary approach based technique in enhancing near field intensity. d) refers to the reference slot
gold antenna configuration (top), and the bottom shows the optimized geometry. The small point refers to where the field enhancement is calculated.
e): represents the comparison between the reference geometry (black curve) and the optimized one (red curve) as indicated by the field maps in (f).
(d–f) Reproduced with permission.[15] Copyright 2012, American Physical Society.

question is: how can we deal with multiple targets? such as mul-
tiple optical functionalities or optimization at different operat-
ing wavelengths? In the following, we present a quick survey of
the attempts to include multiobjective optimization in the frame-
work of GAs for metasurface designs. We refer to Ref. [62] for
more information about multiobjective optimization for evolu-
tionary strategies.
The most straightforward way is to combine the targets into

a single objective function and weigh each target with a normal-
ization term based on the prioritization of the target. However,
according to Ref. [11], this is sub-optimal. A more effective
method to perform this multi-objective optimization is to con-
sider an adaptive form of GAs, which has been applied to design
binary metasurfaces with two targets in the objective function
(see Figure 4e). The main idea behind the adaptive approach is
to initially perform the GA that considers only one target in the
objective function. After this first round of optimization is done,
the objective function ismodified to account for the second target
and the GA is applied again to the whole problem until it reaches
a satisfactory solution for both targets simultaneously. This adap-
tive GA is used to theoretically optimize different metasurface
devices, including binary pattern reflect-arrays and dual beam
aperiodic leaky wave antennas.[11]

There have been other attempts to apply GAs to the multi-
objective optimization of metasurface devices, including a re-
configurable metasurface device that has been demonstrated
experimentally[13] (see Figure 4f). The main goal was to achieve a
tunable metasurface configuration, using a specific composition
of the Chalcogeneide glass, which changes its response from be-
ing highly transparent to being highly absorptive at 𝜆 = 1.55 μm
as a function of temperature. The optimization of the device is
done using an adaptive GA together with a full-wave electromag-
netic solver based on the periodic finite element boundary inte-
gral method.[63] Another study aiming at optimizing the design
of colour pixels based on Si nanostructures used an evolutionary
algorithm coupled to a frequency-domain Maxwell solver to treat
amulti-objective function.[64] Recently, some advanced evolution-
ary strategies have also been extended to design multifunctional
metasurfaces.[53,65,66]

For the GA approaches presented here, all require fullwave cal-
culations of Maxwell’s equations for all devices in each genera-
tion, which adds up to at least a few thousand of simulations.
Therefore, this technique is computationally expensive and has
to be used with efficient fullwave solvers, especially when consid-
ering the optimization of 3D structures. We note that the previ-
ously mentioned ABC evolutionary algorithm has been used to
optimize metasurface designs, and when compared with a clas-
sical GA,[14] the ABCmethod is 35% faster while producing com-
parable results to GA.

3.2. Particle Swarm Optimization for Metasurfaces

The Particle Swarm Optimization (PSO) algorithm is an iterative
global optimization technique in which the population (swarm)
consists of a predefined number of small particles, each of which
are coordinates in the search space.[1] These particles try to im-
prove their location in the search space by remembering their
best location and sharing this information with the other mem-
bers of the population. The PSO has been used to optimize differ-
ent photonic devices including diffraction grating structures,[67]

photonic crystal waveguides,[68] and to optimize metal nanopar-
ticles to obtain broadband plasmonic field enhancement over the
entire visible regime.[69]

In Ref. [70], the PSO algorithmwas coupled to an FDTD solver
to realize metasurfaces consisting of etched features within ex-
tended slab waveguides. This metasurface architecture, which
is also discussed theoretically in Ref. [14], is complementary
to more traditional metasurface layouts based on structurally-
isolated nanostructures.With PSO, the radii of ten nanoholes and
their relative positions are initially optimized to maximize light
deflection at thewavelength 𝜆 = 4.2𝜇m, using a predefined num-
ber of iterations. At the end of this step, the best device within the
population is identified and further locally optimized using a gra-
dient descent-based technique (see Figure 6). This work showed
for the first time the connection of the high forward scattering ef-
ficiency of a cell with the well-known Kerker conditions that exist
for isolated scatterers (see also Ref. [71]).
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Figure 6. a) Beam deflector Si metasurface made of spherical nanoholes. b) Top view of the structure, in which the supercell is delineated by the black
rectangle. the parameter d in the figure represents center-to-center distance. c,d) Normalized far field radiation pattern before and after optimization.
(a-d) Reproduced with permission.[70] Copyright 2017, Optical Society of America. e) A polarization beam splitter based on metasurface-assisted silicon
nitride Y-junction. The input port is I0, TM0 can be converted to TE0 through the path I0 −O1 similarly, TE0 can be converted to TM0 through the path
I0 −O2. The metasurface (red part) needs to be optimized to enhance the efficiency of the device. f,g): represent the simulated TM0 and TE0 injected
modes and their output responses, respectively. (e–g) Reproduced with permission.[72] Copyright 2019, Elsevier.

PSO has also been applied to optimize a polarization beam
splitter based on metasurface-assisted silicon nitride Y-junction
for mid-infrared wavelengths[72] (see Figure 6e. The main objec-
tive of this device is to convert the fundamental TM0 mode to the
TE0 and vice versa with high efficiency. In order to maximize the
mode conversion efficiency, the Y-junction is patterned with sil-
icon metasurfaces (see red parts in Figure 6e). The optimization
results are validated using numerical simulations, as indicated in
Figure 6f,g.

3.3. Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

With the evolutionary optimization strategies presented thus
far, we have seen that the internal optimization parameters,
such as the number of generations and mutation protocol,
must be carefully chosen. The convergence of these methods
can be accelerated by tuning these internal parameters, but
this task is usually tedious in practice and is computationally
costly. While it is possible to automatically adjust these internal
parameters during optimization, most classical evolutionary

strategies operate with fixed parameters during the optimization
process.[10–12,52]

The Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) is an alternative evolutionary strategy that is ca-
pable of adapting its internal optimization parameters during
the optimization process. CMA-ES is population-based and
operates by iteratively evolving a Gaussian distribution of design
candidates within the search space in order to find the global
maxima.[1,73,74] This Gaussian distribution is fully defined by its
mean and covariance matrix, the latter describing the shape of
the distribution. This advanced evolutionary strategy uses several
automatically adjustable parameters that allow the covariance
matrix to adapt to the local characteristics of the function to be
optimized. Starting from an initial random guess, the algorithm
searches for the global maxima by reshaping and resizing its
Gaussian sampling automatically every few iterations.
Recently, CMA-ES has been applied to the design of phase

gradient metasurfaces operating at the visible light regime.[75]

The CMA-ES algorithm has also been used to optimize several
metasurface devices such as infrared broadband quarter-wave
plate metasurfaces,[76] metasurface absorbers,[77] and apochro-
matic singlets metasurface-augmented GRIN lenses.[78]
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Figure 7. Neural network architectures for the inverse design of nanophotonics systems. a) deep, fully connected neural networks as a surrogate electro-
magnetic simulator. Reproduced with permission.[83] Copyright 2018, American Association for the Advancement of Science. b) optimizer that combines
neural network simulators with particle swarm algorithms. Reproduced with permission.[87] Copyright 2019, Wiley-VCH. c) tandem neural network com-
bining an inverse and forward deep network. Reproduced with permission.[84] Copyright 2018, American Chemical Society. d) freeform nanostructure
inverse design using generative adversarial networks. Reproduced with permission.[88] Copyright 2019, American Chemical Society. e) global topology
optimization networks (GLOnets) are global, population-based optimizers that train using simulations from the adjoint variables method. Reproduced
with permission.[89] Copyright 2019, American Chemical Society.

Algorithm 1 Simple illustration for the CMA-ES steps

1. Start with an initial guess (mean, and shape of the distribution)

– m: mean of the distribution

– C (matrix): shape of distribution (C = I is the identity matrix for the initial
guess)

2. Generate population: xi = m +Ni(𝜎
2, C)

3. Evaluate the objective function using the electromagnetic solver for all the
individuals of the population

4. Sort the generation (choose the most fitted individuals)

5. Update mean, variance, and the covariance matrix

6. Repeat steps (2 − 5) until convergence is achieved

4. Inverse Designs Using Artificial Neural
Networks

The machine learning revolution has transformed the way large
datasets are handled and processed in all fields of technology
and science. The electromagnetic device geometries and their
responses can be treated as large datasets, making the use of
machine learning highly applicable and relevant. The last two
years have witnessed rapid growth in applying deep learning in
the field of nanophotonics.[24,25,79–82] However, in this section, we
will examine howmachine learning can aid in the inverse design
and optimization of metasurface structures. We will focus on two
types of deep learning architectures, discriminative and genera-
tive networks.

For electromagnetic design problems described by a small
number of geometric parameters, discriminative networks can
accurately map the explicit relationship between a geometry and
its electromagnetic response. Discriminative networks are super-
vised learning algorithms that learn from a training set, and the
learning process can be mathematically described as mini batch
gradient descent. In basic form, these algorithms are deep neural
networks[83,84] that comprise multiple layers of interconnected
nodes, called neurons, which perform non-linear mathematical
operations on a set of weighted inputs to produce an output
value (Figure 7a). More sophisticated algorithms utilize convolu-
tional neural networks,[85] in which convolution operations are
performed by neurons. The weights and convolutional kernels
are learnable parameters that are determined from the network
training process. Given the non-linear responses of individual
neurons and their ensembles, the highly non-linear relationship
between geometry and response can be properly captured.
To date, discriminative networks have been demonstrated to
accurately model a wide range of nanoscale electromagnetic sys-
tems, including the scattering and chiral properties of plasmonic
structures,[83,85] silicon photonic devices,[86] andmetasurfaces.[19]

Trained discriminative networks can be used to optimize
electromagnetic systems in a variety of ways. One way is to
treat the discriminative network as a high speed electromagnetic
solver and embed it into classical iterative optimization schemes,
such as genetic[90] and particle swarm[87] algorithms (Figure 7b).
Compared to conventional electromagnetic solvers, a trained
discriminative network can model the electromagnetic response
of a system with order-of-magnitude faster times. Another way
is to directly optimize the electromagnetic device using iterative
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backpropagation, which performs optimization using gradient
descent.[83] The idea is to first start with a random geometric
input, calculate its optical response with the neural network, and
iteratively backpropagate the difference between the actual and
desired optical response. During backpropagation, the network
weights are fixed and the input geometry is modified to reduce
the optical response error. In a third approach, discriminative
networks can be configured to directly solve the inverse problem
without requiring an iterative process by specifying the inputs of
the network to be the desired optical response and the outputs to
be the device layout. To help ensuring the stability and accuracy
of this inverse network, tandem architectures that combine
an inverse network with a forward solver network (Figure 7c)
are effective at producing properly trained networks.[84] In this
algorithm, the forward solver network is first trained, using
supervised learning with a training set, to create a high speed
surrogate solver. An inverse network is then attached to the
trained forward solver network, which has fixed weights, and
the inverse network is trained in the framework of the tandem
network. Tandem networks have been used to design wavelength
filters[84] and topological photonic devices.[91]

The main drawback of discriminative networks is the extreme
amount of required training data. Empirically, for electromag-
netic problem settings that are described by ten geometric pa-
rameters, approximately 10 000 system configurations need to
be considered as inputs for the network to accurately converge.
As a typical example, a metagrating described by sixteen geo-
metric parameters requires 90 000 devices in the training set for
proper network training.[19] As such, even though a trained neu-
ral network can serve as a fast electromagnetic solver, it requires a
very computationally costly off-line training phase. Furthermore,
strategies based on such networks cannot practically scale to com-
plex electromagnetic geometries due to the curse of dimension-
ality. This concept, which is a long-standing problem in machine
learning, states that the design space and training set scale ex-
ponentially with the complexity of the system being modeled. As
such, discriminative network approaches cannot practically ap-
plied to structures described by freeform geometric layouts.
Generative neural networks are an alternative type of network

architecture that can be used in the design of complex electro-
magnetic devices described by tens to hundreds of geometric
parameters. Typically, these networks have desired optical pa-
rameters as inputs and high resolution images of the devices as
outputs. A key feature of generative networks is that, in addition
to the desired optical parameters, a high dimensional latent ran-
dom variable is also used as an input to the network. As such, for
a given desired optical parameter, a wide range of devices can be
generated, each of them mapping onto a unique latent random
variable value. This mapping of an optical parameter to a distri-
bution of devices in the design space is fundamentally different
from the mechanics of discriminative networks, and allows for
very high dimensional structures to be modeled and generated.
There are various methods to train generative networks. One

way is to use a generative adversarial network (GAN), in which
a generative neural network is trained against a discriminative
neural network using a training set (Figure 7d). During training,
the generative network generates devices and feeds them into
the discriminator network. Its objective is to fool the discrimi-
nator network. The discriminator is a classifier with the goal of

accurately differentiating between the generated devices and
those from the training set. Upon the completion of GAN
training, the generator will be able to generate devices that
match the distribution of training set devices. GANs have been
used to realize freeform geometries with tailored reflection
and transmission spectra.[88,92] They can also learn from im-
ages of topology-optimized dielectric metasurfaces to generate
topologically complex devices with high performance.[93]

Generative networks can also be trained directly, without a
training set, using calculations based on the adjoint variables
method. These global topology optimization networks, termed
GLOnets, use the training of a generative neural network to per-
form global topology optimization.[89,94] The concept is outlined
in Figure 7e for metagratings as a model system. In one itera-
tion of the optimization process, the generator produces a batch
of devices, from which the efficiencies are calculated using an
electromagnetic solver and the efficiency gradients are evaluated
using the adjoint variables method. These efficiencies and effi-
ciency gradients are then used to update the network weights
through backpropagation. Upon training completion, the genera-
tive networkmaps the desired optical parameters and latent noise
vectors to an ensemble of high performance devices. Bench-
marking of GLOnets with iterative-only topology optimizers for
metagratings indicates that GLOnets can generate ultra-high effi-
ciency devices, with efficiencies higher than those produced from
many instances of iterative-only topology optimization. While it
is not possible to determine whether these devices are globally
optimal, due to the non-convexity of our optimization problem,
they clearly have exceptional performance metrics. We antici-
pate that hybrid machine learning concepts, which properly in-
corporate physical knowledge into neural networks through the
use of physics-based calculations and that can even directly solve
physics-based differential equations,[95] will play a large role in
the future of electromagnetics inverse design.

5. Bayesian Optimization

A central benchmarking standard for any inverse design tech-
nique is the computational cost. For most photonics problems,
these techniques require rigorous and expensive electromagnetic
solvers to accurately compute the objective function at each op-
timization step. The computational cost of the electromagnetic
solver can be mitigated by using an Artificial Neural Network
(ANNs) as a surrogate solver, but a significant number of elec-
tromagnetic simulations still must be performed to train the
network prior to optimization.[19,84] In this section, we discuss
an alternative optimization strategy based on surrogate mod-
eling, named Efficient Global Optimization (EGO),[96,97] which
has been introduced recently in the context of the design of
nanophotonic devices.[98] The EGO algorithm is a global opti-
mization algorithm that substitutes the complex and costly it-
erative electromagnetic evaluation process with a simpler and
cheaper model.[96,97] Its aim is to maximize a specific statistical
criterion related to the optimization target, which is referred to
as the merit function. EGO involves two main phases. The first
one is called the Design Of Experiment (DOE), in which an ini-
tial database is generated using a sampling of photonic devices
within the design space. These devices are simulated using an
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Figure 8. Illustration of the EGO algorithm using a simple 1D example. The black curve is the exact analytical function to be minimized. a) The initial
step. The blue points are the DOE database elements, and the orange curve is the first surrogate model that fits the blue points. b) Similar to (a), except
that the merit function is computed for each point on the orange curve (each parameter value). It is represented by the green curve and the right label.
As can be seen, at x ≈ 0.62, the merit function is maximized (see red dashed line). It means that this value of x corresponds to the highest probability
to improve the results, i.e obtain a better minimum. c) The objective function is computed at x ≈ 0.62 using the solver and the new value is added to
the database (red point). A new model is constructed (see orange curve in (c)). d) One computes the merit function based on this new model and all
the steps are repeated until the value of the merit function approaches zero, shown here. In this example, the surrogate model (orange curve) coincides
with the exact analytical function (black curve). For this simple example, only 20 iterations are required for the system to converge.

electromagnetic solver to compute their corresponding objective
function values, which are stored in the database. In the second
phase, a Gaussian Process (GP) model is constructed by inter-
polating the database points. Internal model parameters are cal-
ibrated according to a maximum likelihood principle.[99] Once
this GP model is defined, one can obtain an estimation of the
objective function at any point of the design space, which rep-
resents the model mean, and an estimate of the prediction un-
certainty, which is the model variance. These quantities are then
used to define a statistical merit function, called the Expected Im-
provement (EI), whosemaximum corresponds to the next design
parameters to be evaluated using an electromagnetic solver. After
simulating this new point, this new data is added to the database.
This process in the second phase is repeated until convergence.
In Figure 8, we present a simple 1D example that illustrates the
basic mechanisms of the EGO algorithm.
In Ref. [98], EGO was applied to optimize 3D nanoparticle

shapes to design the morphology of metal nanoparticles. The
main target was to maximize the average electric fields on their
surfaces. The optimization is performed by changing the shapes
of the particles and the excitation wavelength. Several plasmonic
materials were considered in the optimization, including gold
and silver. We would like to mention that a comparison between
five benchmarking global optimization methods have been per-
formed in Ref. [100], in which it is shown that the Bayesian-based
optimization techniques require less simulation time compared
to other techniques. The main limitation of the Bayesian opti-
mization is the cost to construct the model when a large number
of observations is included. It is usually related to the difficulty
in handling a large parameter space. Indeed, this requires a
large database in the design of experiments phase, nearly ten

times the number of parameters, while the increased number of
iterations requires costly simulations for the metamodel adapta-
tion after each iteration. Moreover, the model training becomes
computationally expensive when too many points are fitted.
Recently in Ref. [75], we applied the EGO algorithm to the

optimization of metasurfaces. The objective was to maximize
the light deflection efficiency at 𝜆 = 600 nm using metasurface
designs based on rectangular and spherical nanopillars. Opti-
mizing up to eight parameters describing arrays of cylindrical
nanopillars, one can obtain more than 85% efficiency for the
deflection of both TM and TE polarizations. In addition, in
using rectangular-shaped antennas and optimizing twelve pa-
rameters, one obtains more than 88% efficiency for incident TM
polarized waves, as indicated in Figure 9. Moreover, in Ref. [75],
we have shown that several optima may exist for this problem,
and that the use of EGO allows for the identification of all the
physically relevant global optima related to the geometry under
consideration.
This optimization approach, based on the iterative construc-

tion of a database and an associated model, can be considered as
a statistical learning strategy. The main feature of EGO is the use
of internal uncertainty estimation (i.e., variance) to drive both the
search for the optimum and the improvement of the model accu-
racy simultaneously. This concept is different from ANNs, which
aim to construct an accuratemodel within thewhole design space
prior to optimization, which is very expensive when the param-
eter space is large. On the contrary, EGO focuses on the most
promising areas of the design space. It is therefore far less ex-
pensive in terms of electromagnetic solver calls, and in practice,
only a few hundred electromagnetic simulations are typically re-
quired for EGO. For instance, it was demonstrated in Ref. [75]
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Figure 9. Optimization of rectangular-shaped nanoantennas using the EGO algorithm. a) The geometry under consideration consists of rectangular
nanoridges made of GaN (dark red) on top of a semi-infinite substrate made of Al2O3 (green region). The twelve red circles represent the optimization
parameters. Under normal illumination, we aim atmaximizing the diffraction efficiency for the first ordermode 𝜂TM(0,−1) at 𝜆 = 600 nm. b)Optimization
process using EGO as a function of the number of fullwave solver calls. The blue points represent the DOE (shaded region), the black points represent
the value of the objective function at each iteration, and the green solid line indicates the best performance obtained so far. c) Diffraction efficiency as a
function of the wavelength for the optimized design. We notice that it is maximal at the desired wavelength indicated by the black line. d) Field map at
𝜆 = 600 nm for the optimized design. (a–c) Reproduced with permission.[75] Copyright 2019, Springer Nature.

that one needs in total 150 solver calls for both the iterative en-
richment and DOE (80 points) in order to optimize a structure
with twelve parameters.

6. Robustness

This burgeoning field of research in computational nanophoton-
ics applied to the design of metasurfaces is currently booming,
offering new design perspectives. It is nevertheless important to
point out that the uncertainties related to fabrication errors are
not considered for most of the optimization methods discussed
so far, and that they play an important role to addressing errors
and uncertainties during the fabrication process.
In gradient-based topology optimization, geometric robust-

ness can be incorporated by considering the performance of
the eroded and dilated versions of the device throughout the
optimization process.[101] By incorporating the performance of
these geometric variants into the objective cost function, the final
devices become relatively insensitive to geometric perturbations.
Experimental characterization of devices designed with robust-

ness criteria show that robust devices are relatively insensitive
to differing levels of over- and underexposure from the lithog-
raphy fabrication process. We note that there exists a trade off
between robustness and maximum device performance, which
does place practical limits on metasurface performance. It is
worth mentioning that, if to the best of our knowledge very few
papers are discussing this issue for metasurface designs, several
other works have been reported, applying sensitivity analysis in
optimizing various electromagnetic devices.[28,102,103]

An alternative methodology for the optimization of robust
metasurfaces leverages a concept termed Uncertainty Quantifi-
cation (UQ).[104] In this reference, the authors optimize a 2D
(i.e., periodic only in one direction), high contrast, subwavelength
grating comprising gallium nitride (GaN) in order to maximize
the light deflection at a given fixed angle at visible regime. The
results are summarized in Figure 10. With UQ, the authors op-
timize the influence of the manufacturing process in order to
obtain robust structures that are insensitive to small manufac-
turing imperfections.
As a first step, the authors optimize several designs by comput-

ing the electromagnetic response of arrays of 2D subwavelength
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Figure 10. a) Illustration of the 2D phase gradient metasurface made of GaN nano-resonators (orange ridges) placed over a substrate made of Al2O3.
The height is fixed to 1000 nm. The main goal is to optimize the thicknesses (𝛿Xi) and the positions of the nanoridges Xi. b) UQ results for uniform
input distributions. (a,b) Reproduced with permission.[105] Copyright 2019, Optical Society of America.

ridges using the rigorous coupledwave analysismethod, together
with a gradient-free pattern search algorithm,[104] implemented
in the Matlab optimization toolbox. In a second step, they per-
form a UQ analysis and explore the impact of geometrical varia-
tions in technologically relevant parameters such as ridge widths
𝛿Xi and relative ridge positions Xi. A Monte Carlo ensemble of
a million random device realizations are numerically simulated
to evaluate the sensitivity of the optimal design with respect to
manufacturing imperfections through statistical indicators, in-
cluding the mean deflection efficiency, standard deviation to the
mean value, and confidence intervals. The results show that the
number of elements per phase gradient period plays a consider-
able role in the reliability of the structures with respect to small
±5 nm uncertainties in the widths and positions.[105]

7. Conclusion

As a general conclusion of this work, we gave an up-to-date
overview of optimization techniques used in the field of meta-
surface designs. We focused on the most general and common
inverse design techniques used in the literature. We hope that
the discussion provided herein will be helpful and useful even for
readers that are non-experienced in the field of inverse design.
First, we introduced gradient-based optimization techniques,

including the objective-first algorithm and topology optimiza-
tion. These algorithms can produce freeform geometrical shapes,
and can deal with a very large number of design variables in an
efficient manner. They can lead to sophisticated, complex, and
non-intuitive designs, yet with high efficiencies. Nevertheless,
there are still some challenges in fabricating the produced non-
intuitive designs. In addition, these techniques depend strongly
on the initial design.
Second, we presented genetic algorithms (GA) and the co-

variance matrix adaptation evolution strategy (CMA-ES), which
are widely used global optimization techniques. These methods
are iterative and based on a population of designs that represent
the optimization parameters. In general, GAs and CMA-ESs
can deal with large parameter space at both the continuous and
the discrete levels. However, they require expensive electromag-
netic solver calls, especially when dealing with large parameter
spaces. CMA-ES has the particular advantage in that it is a self-
adapted global optimizationmethod. Unlike GA and other global

techniques, CMA-ES tunes its internal parameters during the
optimization process, making it a suitable global optimization
strategy for complex problems with large parameter spaces.
Third, we discussed the utilization of artificial neural networks

(ANNs) and deep learning architectures, namely discriminative
and generative networks, for the inverse design of metasurface
devices. For systems described with a small number of parame-
ters, discriminative networks can accurately determine the rela-
tionship between the optimization parameters and their electro-
magnetic responses, thereby serving as computationally efficient
surrogate electromagnetics solvers. However, this type of ANN
requires a high computational overhead in order to effectively
train the network and it cannot be practically applied to complex
problems. With generative neural networks, a high dimensional
latent random variable is used as an input to the network, mean-
ing that a wide range of devices can be generated and outputted.
This mapping of a latent space to a distribution of devices allows
the amount of training data to be reduced and high dimensional
structures to be modeled and generated. This concept has been
used recently in the framework of global topology optimization.
Finally, we discussed the concept of Bayesian Optimization as

an alternative approach for the inverse design of metasurfaces.
More precisely, we focused on a widely used approach, which is
called Efficient Global Optimization (EGO). The EGO algorithm
is a global optimization algorithm based on a surrogate model,
and it replaces the costly evaluation process by a simpler and
computationally cheaper model. EGO uses internal statistical cri-
teria in order to choose correctly the new evaluations that will en-
rich the model to miminize/maximize of the objective function
and improve its accuracy as well. EGO uses trained data in its
initial phase, however the number of trained data is far smaller
than the ones used in the ANNs framework.We also touch on the
importance of optimizing robust devices the implementation of
Uncertainty Quantification to capture the sensitivity of manufac-
turing imperfections in the device design process. Among all of
these optimization methods, a great deal of attention will soon
be devoted to the simultaneous optimisation of multifunctional
metasurfaces, i.e. metasurface designs involving more than one
objective function, in particular to find trade-off designs able to
resolve the poor efficiency of broadband metasurfaces. Methods
such asmultiobjective programming, multicriteria optimization,
multiattribute optimization, vector optimization or Pareto-front
optimization, which have already been applied to many fields of

Laser Photonics Rev. 2020, 1900445 © 2020 Wiley-VCH GmbH1900445 (14 of 17)
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science and engineering, would lead realistic metadevice designs
with increased performance and capabilities.
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J. Vučkovíc, Scientific Reports 2015, 4.
[8] D. Sell, J. Yang, S. Doshay, J. A. Fan, Adv. Opt. Mater. 2017, 5,

1700645.
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