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            Introduction 
 Metasurfaces are electromagnetic technologies based on the 
subwavelength-scale structuring of thin-“ lm materials.  1 , 2   In 
the last decade, metasurfaces have garnered extensive interest 
due to their transformative potential in a broad range of pho-
tonic applications. One domain of interest is imaging optics, 
where metasurfaces can tailor the wavefront of an incident 
wave with customized properties. These capabilities have led 
to new types of optical components, ranging from ultrathin 
metalenses  3   …   5   and dispersion compensation optics  6   to elements 
that can enable full polarization mapping of an image.  7   The 
ability to tailor light…matter interactions with extreme cus-
tomization has also led to metasurface applications in non-
imaging optics, including optical mathematical processors,  8 

holographic media,  9   and quantum metrology hardware.  10 

 A central and open research problem with metasurfaces 
has been understanding how to systematically design a device 
given a desired optical response. The conventional approach 
has been to “ rst create a library of •meta-atoms,Ž which are 
subwavelength-scale geometric shapes with a range of optical 
responses, and then to arrange these meta-atoms in a lattice to 
produce an optical phased array. Initial concepts developed by 
the Lalanne group utilized nanoscale waveguides as phase-
shifting elements.  11 , 12   Other groups have since studied meta-
atoms in the form of geometric phase elements,  3   anisotropic 
structures capable of polarization control,  13   and resonant 
metallic  14   and dielectric  15   structures based on plasmonic and 

Mie resonances, respectively. For certain devices, such as 
those that utilize monochromatic light and small numerical 
apertures, these concepts work well. However, they are lim-
ited when considering more advanced device requirements, 
such as large numerical aperture, chromatic aberration cor-
rection, and multiple functional capabilities. To exceed these 
limits, design concepts based on more complex topological 
features, which enable a dramatically expanded design space, 
must be considered. 

 This article discusses the application of topology optimiza-
tion as an alternative method to designing high-performance, 
freeform metasurfaces. Topology optimization is a powerful 
mathematics-driven approach that makes no initial assump-
tions about the topology of the device layout or mechanisms 
for light…matter interactions. Implementation as a local and 
global optimizer is discussed, examples of optimized meta-
surfaces are provided, and the origins for high performance in 
these devices are explored.   

 Local topology optimization: How it works 
 Local gradient-based topology optimization is a method in 
which an initial device design is perturbatively improved over 
a series of iterations. The variation of this concept that we 
will discuss here is the adjoint variables method, which is a 
versatile concept that has been adapted to many “ elds in the 
physical sciences. Historically, gradient-based topology opti-
mization was “ rst applied to photonic devices by the Sigmund 
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group, who utilized these concepts to improve chip-based sili-
con photonic structures.  16 , 17   Shortly thereafter, the Osher and 
Yablonovitch groups applied these methods to optical lithog-
raphy masks  18   and photonic crystals.  19   A number of groups 
have since adapted gradient-based topology optimization to 
a broad range of optics problems.  20   

 A simple example capturing the essence of the adjoint 
variables method, adapted from  Reference 21 , is presented 
here. More detailed quantitative treatments can be found in 
 References 21  and  22 . The objective is to construct a silicon-
based device that maximizes the electric “ eld magnitude, 
 ��� � � �� ( � U  , at position  r   0  given the presence of an incident electro-
magnetic wave. This objective can be cast as the maximiza-
tion of a dimensionless “ gure of merit  � � � �� � � �=F E� ( � U   , where 
 E  0  is a normalization constant. The device comprises a set 
of subwavelength-scale voxels and is initialized with random 
grayscale dielectric values,  23   such that the  i  th  voxel has a posi-
tion  r    i   and a random dielectric constant value   �  ( r    i  ) between 
air and silicon. The aim is to maximize the “ gure of merit by 
iteratively pushing the grayscale values of   �  ( r    i  ) toward the 
discrete dielectric values of silicon or air for all voxels. 

 One way to determine whether the dielectric material at 
each voxel should be pushed toward silicon or air in a given 
iteration is to add a small perturbation to the dielectric con-
stant at each voxel (�  �  ( r    i  ) for the  i  th  voxel) and see if  ��� � � �� ( � U   
increases or decreases in the presence of the incident wave. 
The dielectric perturbation �  �  ( r    i  ) interacts with  E  fwd ( r    i  ) ,  
which is the electric “ eld at  r    i   upon device illumination by 
the incident wave. The resulting scattered “ eld at  r   0  generated 
by this dielectric perturbation, � E ( r   0 ) ,  can be modeled as the 
“ eld produced from an electric dipole  p ( r    i  ) = 
�  �  ( r    i  ) E  fwd ( r    i  ) (  Figure 1  a). This strategy of 
systematically evaluating � E ( r   0 ) given �  �  ( r    i  ) 
for each voxel is effective but computationally 
intensive, as the total number of required simu-
lations scales with the total number of voxels.     

 An alternative method to evaluate � E ( r   0 ) 
due to  p ( r    i  ) is to invoke Lorentz reciprocity, 
which is a symmetry property featured in 
Maxwell•s equations. With Lorentz reciprocity, 
the evaluation of � E ( r   0 ) due to  p ( r    i  ) can be 
equivalently framed as placing an adjoint electric 
dipole  p  adj  at  r   0  and evaluating the electric “ eld, 
called the adjoint “ eld  E  adj , at  r    i   ( Figure 1b ). 
A more mathematical discussion is provided 
in the Supplementary Section. With the adjoint 
approach, the modi“ cations to the dielectric 
constant at all device voxels in a given opti-
mization iteration can now be determined by 
just two simulations ( Figure 1c ). With the for-
ward simulation, the device is illuminated by 
the incident wave and  E  fwd ( r    i  ) is recorded 
everywhere within the device layer. With the 
adjoint simulation, an adjoint electric dipole at 
 r   0  is excited and  E  adj  ( r    i  ) is recorded everywhere 

within the device layer. The gradient to the dielectric constant 
at each voxel that improves the “ gure of merit,  g   i  , is propor-
tional to  ( ) ( ){ }�I�Z�G �D�G�M�i i�5�H �( �U �( �U   .  Finally, for the  j  th  iteration, 
  �    j  ( r    i  ) updates via gradient descent:   �    j+  1 ( r    i  ) =   �    j  ( r    i  ) +  � j

ig   , 
where  �  is the learning rate. 

 These concepts can readily generalize to those in wave-
front engineering by extending the speci“ cation of an adjoint 
dipole at a single point in space to a series of adjoint dipoles 
spanning a contour in space. These dipoles interfere together 
to produce an adjoint wavefront, which has the form of a time-
reversed version of the desired wavefront. Consider now the 
optimization of a periodic metasurface (i.e., metagrating) that 
diffracts an incident beam to the +1 diffraction order.  25   The 
forward simulation is still the same„the device is illuminated 
by the incident wave and  E  fwd ( r    i  ) is recorded at all voxels. 
With the adjoint simulation, the device is illuminated with 
a plane wave that is incident from the desired beam de” ection 
direction and  E  adj ( r    i  ) is recorded at all voxels. The dielectric 
constant at each voxel is then iterative updated using the 
expression for gradient descent above. 

 The framework of this optimization process, in which a 
“ gure of merit is iteratively maximized, can be tailored to help 
ensure that the “ nal devices are high performance and suit-
able for fabrication. First, the condition that “ nal devices take 
discrete dielectric constant values can be enforced by gradual-
ly increasing the magnitude of penalty terms in the “ gure of 
merit that penalize the presence of grayscale dielectric values. 
Second, minimum feature sizes can be enforced within the 
devices by incorporating spatial blurring “ lters within the 
optimization process. Third, devices can be made robust to 

  

 Figure 1.       Local topology optimization based on the adjoint variables method. 
(a) Schematic of an optical device (left) intended to maximize  E r0( )   in the presence 
of an incident electric � eld (E-� eld). The device is subdivided into voxels with tunable 
dielectric constant values (shades of gray). The addition of the dielectric perturbation 
�  �   ( r   i  ) produces the � eld � E ( r  0 ) (dashed red boxes) and can be equivalently treated 
as an electric dipole radiator (right, red arrow). (b) Schematic of Lorentz reciprocity„
(left) an electric � eld measured at  r  0  due to a dipole at  r   i   can be (right) equivalently 
evaluated by placing an adjoint dipole at  r  0  and measuring the adjoint electric � eld 
at  r   i  . (c) Schematics of the (top) forward and (bottom) adjoint simulations used in the 
adjoint variables method. With just two simulations, adjustments to the dielectric 
constant values at all voxel positions, in a manner that improves the � gure of merit, 
can be calculated. Note:  r  0 , position of � eld maximization;  E , electric � eld;  r   i  , position 
of  i  th  voxel;  p , electric dipole;  E  fwd , forward electric � eld in device;  E  adj , adjoint electric 
� eld in device;  p  adj , adjoint electric dipole.  21      
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fabrication imperfections by incorporating the performances 
of spatially eroded and dilated versions of the devices into the 
“ gure of merit.  26 , 27     

 Theoretical design and experimental validation 
 To determine how well these design concepts translate to prac-
tical implementation, a broad range of topology-optimized 
devices have been experimentally implemented. Initial dem-
onstrations of topology-optimized metasurfaces are of meta-
gratings that de” ect a monochromatic normally incident beam 
to a 75° angle with high ef“ ciency  25   (  Figure 2  a). These devices 
experimentally de” ect both transverse electric and transverse 
magnetic polarized light with  �  75% absolute ef“ ciency, which 
is approximately twice as high as the theoretical ef“ ciencies 
calculated for conventional phased array-based metagratings. 
Devices that anomalously diffract monochromatic non-normal 
incidence light with high ef“ ciencies  28   ( Figure 2b ) and multi-
functional metagratings that de” ect incident light with different 
wavelengths to different diffraction orders  29   have also been 
demonstrated ( Figure 2c ).     

 For aperiodic metasurfaces, relatively small area devices 
that are a few tens of square wavelengths large can be optimized 
at once. For larger-area devices, the computation resources 
required to optimize a full device become immense, due to 
the power law scaling of computation time with device size. 
A more tractable approach to these design problems is to “ rst 

construct libraries of topology-optimized wavelength-scale 
scatterers that directionally scatter incident light with tailored 
phases. A plot of the scattered electromagnetic waves from 
a representative scattering structure ( Figure 2d ) shows highly 
ef“ cient directional scattering mediated by near-“ eld inter-
actions between dielectric nanostructures.  30   These scatter-
ers can then be selected and stitched together to produce a 
desired device, such as a cylindrical metalens  30   made from 
single-crystal silicon “ lms  31   ( Figure 2e ).   

 Origins of high performance 
 To understand the nature of light…matter interactions within these 
metasurfaces, coupled Bloch mode analysis can be applied to 
the metagratings.  32 , 33   In this theory, the metagrating is treated 
as a Fabry…Pérot resonator, which is an optical cavity made 
from two parallel re” ective surfaces, and it supports geometry-
dependent Bloch optical modes. These modes are analogous 
to the spatial waveguide modes in an optical “ ber and are the 
“ eld pro“ les that would propagate without coupling through an 
in“ nitely thick metasurface (  Figure 3  a). Incident plane waves 
couple into these Bloch modes and, in the process of propa-
gating through the metagrating, accumulate mode-dependent 
phase shifts described by the phase accumulation matrix,   �  . 
When these Bloch waves interact with the substrate…metagrating 
or metagrating…air interface, a combination of three types of 
phenomena can occur. First, the electromagnetic waves can 

  

 Figure 2.       Examples of topology-optimized metasurfaces. (a) Ef�  ciency plot of a metagrating that de�  ects a normally incident wave to a 
75° angle.  25   Insets: (bottom) schematic of device function and (top) scanning electron microscope (SEM) image of device. (b) Ef�  ciency 
plot of a metagrating that de�  ects a wave, incident at a +50° angle relative to normal, to a …50° angle.  28   Insets: (right) schematic of device 
function and (left) SEM image of device. (c) Multifunctional metagratings that de� ect normally incident waves of (i) two and ( ii) � ve 
wavelengths to different diffraction orders.  29   (iii) Metagrating ef� ciency as a function of number of split wavelengths ( N ). The ef� ciency 
scaling trends are greater than the 1/ N  benchmark typical of conventional metasurface multiplexing schemes. (d) Simulated distribution 
of the � eld intensity for a wavelength-scale topology-optimized structure that scatters normally incident light to a 20° angle with a 90° 
phase response.  30   (e) (i) SEM images and (ii) intensity line scan at the focal plane of a cylindrical metalens with a numeric aperture (NA) 
of 0.8, fabricated from a single-crystal silicon �  lm. TM-polarized waves with a wavelength of 640 nm focus to a diffraction limited spot 
with a full-width half-maximum of 0.34  �  m.  30   The experimental metalens compares well with the simulated device. Note:  �  , wavelength; 
TE, transverse electric; TM, transverse magnetic;  �   in , incident angle;  �   out , outgoing angle.    
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scatter backward and couple into different Bloch modes 
in a process termed intermode coupling. Second, the waves can 
re” ect back into the same mode in a process termed intramode 
coupling. Third, the waves can outcouple into the free space dif-
fraction channels. These scattering and outcoupling phenomena 
are captured by the transmission and scattering matrices, which 
are  t  B  and  S  B  at the substrate…metagrating interface, respective-
ly, and  t  T  and  S  T  at the metagrating…air interface, respectively. 
Diffraction ef“ ciency, quanti“ ed by the equation in  Figure 3a, 
is  high when the light that outcouples from the different Bloch 
modes to the desired diffraction channel (arrows in dashed 
boxes,  Figure 3a ) undergoes strong constructive interference.     

 Bloch mode analysis was applied to the freeform metagrat-
ing featured in  Figure 2a , and the mode pro“ les and scattering 
matrices are shown in  Figure 3b…c , respectively.  25   Most of the 
Bloch modes are spatially distributed over the entire grating pe-
riod, and many have strong higher-order-mode characteristics. 
The scattering matrices show that the modes undergo strong 
intramode and intermode coupling, as indicated by the colored 
diagonal and off-diagonal terms in the scattering matrices, 
respectively. As such, these mode dynamics can be described 
by a multiple scattering regime in which light bounces between 
the top and bottom grating interfaces, mixing light between 
modes in the process. This analysis indicates that the extraor-
dinary performance exhibited by freeform metasurfaces is due 
to complex light…matter interactions that cannot be captured 

through simple physical models, and the only way to access 
these regimes of the design space is through optimization. 

 Are nontrivial light…matter interactions such as intermode 
coupling required for high performance, or are they merely a fea-
ture that arises from the use of topology optimization? To probe 
this inquiry, we designed topology-optimized metagratings that 
de” ect normally incident transverse electric polarized light to a 
65° angle from silicon nitride (index of refraction  n  = 2.0), tita-
nium dioxide ( n  = 2.4), and silicon ( n  = 3.4).  34   The best silicon 
device operates with an ef“ ciency of 92%, while the best tita-
nium dioxide and silicon nitride devices operate with only 76% 
and 67% ef“ ciencies, respectively. These ef“ ciency discrepan-
cies cannot be explained by the layouts or the Bloch modes of the 
system, which are nearly identical for all devices.  34   The principal 
difference is that the silicon device supports strong intermode and 
intramode coupling, due to its relatively high dielectric contrast, 
while the titanium dioxide and silicon nitride devices do not. 
This numerical experiment is not a proof, but it does suggest 
that intermode and intramode coupling is an important factor 
when attempting to realize ultrahigh ef“ ciency metasurfaces.   

 Global topology optimization 
 As the adjoint variables method is a local optimization approach 
based on gradient descent, it requires the initial dielectric distribu-
tion to be in a region of the design space containing high-perfor-
mance devices. If this region is not known  a priori , multiple local 

  

 Figure 3.       Coupled Bloch mode analysis. (a) Schematic of the mode dynamics described in coupled Bloch mode analysis theory.  25 , 33   
(i) Incident light couples into one of  n  spatial Bloch modes and circulates within the metasurface (bold arrows within device). Light transmitted 
to the +1 diffraction channel is produced from the interference of light outcoupled from each Bloch mode (bold arrows in dashed  boxes). 
(ii) Light scattering at the metagrating…air and metagrating…substrate interfaces can undergo a combination of intermode, intramode, and 
outcoupling dynamics. Diffraction ef�  ciency  t  is calculated from a combination of transmission, scattering, and phase-shifting matrices. 
(b) Field pro� les of the Bloch modes of the metagrating featured in  Figure 2a , plotted as the magnetic �  eld magnitude, for a TM-polarized 
incident beam.  25   The green lines delineate the device outline. (c) (Left) Transmission and (right) scattering matrices at the (i) substrate…metagrating 
and (ii) metagrating…air interfaces, respectively, of the device featured in  Figure 2a .  25   Each matrix term has a magnitude between zero 
and one. The matrices display strong intermode and intramode dynamics. Note: TM, transverse magnetic; M1ƒ M n , Bloch modes;  t , 
light transmission to the +1 diffraction channel;  t  B  and  S  B , transmission and scattering matrices at the substrate…metagrating, respectively; 
 t  T  and  S  T , transmission and scattering matrices at the metagrating…air interfaces, respectively   �   , phase accumulation matrix;  j , index for 
number of bounces within the metasurface;  n  eff , effective refractive index.    
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optimizations are typically performed using different random ini-
tial dielectric distributions, with the hope that a fraction of these 
optimizations work out well. Recently, a new platform was pro-
posed for population-based optimization that can perform a glob-
al search for topology-optimized devices across the full design 
space. This method reframes the topology optimization process as 
the iterative training of generative neural network, termed global 
topology optimization network (GLOnet).  35 , 36   Upon the comple-
tion of network training, the generative network ideally outputs a 
narrow distribution of devices that are near the global optimum. 

 A schematic of a GLOnet for metagratings is shown in 
  Figure 4  a. The metagratings comprise silicon ridges, and an 
individual grating period is subdivided into 256 sections that 
can be either silicon or air. The generative neural network takes 
the metagrating de” ection angle  � , operating wavelength  � , and 
a latent variable  z  (i.e., a high-dimensional random variable) as 
inputs, and outputs devices  x  as a 1 × 256 dimensional vector. 
This nonlinear mapping between the input and output terms is 
determined by tunable numerical weights within the network.     

 Each iteration of network training is performed as follows. 
First, a batch of devices is generated through random sampling of 
 z   .  Second, the ef“ ciencies, as evaluated by an electromagnetics 
solver, and the ef“ ciency gradients, as evaluated by the adjoint 
variables method, are calculated. Third, these ef“ ciencies and ef-
“ ciency gradients are used to evaluate the loss function of the 
network, which is akin to a “ gure of merit we are trying to mini-
mize. The loss function gradient is backpropagated through the 
network, which updates the weights in a manner that improves 
the network mapping of noise to devices. 

 GLOnets are capable of realizing high-performance metasur-
faces that are dif“ cult to produce even with many local topology 
optimization attempts. As a demonstration, metagratings have 
been designed with a range of wavelengths and angles using 
a single conditional GLOnet, and the best generated device ef“ -
ciencies are visualized in the contour plot in  Figure 4b . These 
ef“ ciencies are compared to the best device among 500 meta-
gratings for each wavelength and angle pair, using the adjoint 
variables method with random initial dielectric distributions 
( Figure 4c ). The comparison shows that 57% of the devices in the 
GLOnet plot have ef“ ciencies higher than those produced from 
iterative-only optimization. Ef“ ciency histograms produced 
from these two optimization schemes ( Figure 4d ) indicate that 
GLOnets often generate device distributions that cluster around 
high-ef“ ciency values, which is consistent with the objectives 
of the network training process, while the locally optimized 
devices span wider distributions of ef“ ciencies. As GLOnet is 
a population-based optimization method that shifts the distribu-
tion of generated devices toward promising regions of the design 
space during training, the computation resources required to train 
the GLOnet featured in  Figure 4b  is one order of magnitude less 
than that used to perform the local optimizations in  Figure 4c .   

 Summary and outlook 
 Topology optimization is a powerful inverse design tool. 
Compared to other inverse design methods,  37   topology op-
timization presents a number of key advantages. First, pairs 
of forward and adjoint electromagnetic simulations can be used 
to improve devices with arbitrarily small voxel dimensions. 

  

 Figure 4.       Global topology optimization networks (GLOnets). (a) Schematic of GLOnet.  36   A generative neural network consists of trainable 
fully connected and deconvolutional neural layers and outputs a distribution of metasurfaces from random noise inputs. In the t raining 
process, the adjoint variables method is applied to the outputted devices and the corresponding gradients are backpropagated th rough the 
network. (b, c) Ef� ciency maps of metagratings designed using (b) GLOnets and (c) topology optimization. GLOnets generally display higher 
ef� ciencies, showing the ability of this design method to produce exceptionally high performing devices.  36   (d) Histograms of ef� ciencies 
for devices designed using topology optimization (red) and GLOnets (blue) across different wavelengths (600, 900, and 1200 nm) and 
de� ection angles (40°, 60°, and 80°).  36   The GLOnet histograms generally have narrower distributions and higher average and maximum 
ef� ciency values. Note:  �  , wavelength;  �  , de� ection angle;  z , latent variable;  x , refractive index pro�  le of device.    
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Next, the ability for topology optimization to handle small 
voxel dimensions allows for high order optical modes within 
and near-“ eld coupling between subwavelength-scale structures 
to be tailored with high spatial resolution. Finally, experimen-
tal constraints, such as minimum feature size and fabrication 
robustness, can be readily incorporated. 

 An exciting future direction for the inverse design of meta-
surfaces is the extension of device layouts to fully three-
dimensional (3D) shapes, which can access more design degrees 
of freedom. Inverse design methods are essential to search in this 
design space, as these devices operate with optical dynamics 
that are exclusively in the strongly multiple scattering regime. 
Theoretical analyses of multilayer metamaterials demonstrate 
the great potential of multilayer metamaterials to serve as high-
ef“ ciency, aberration-corrected elements.  38 , 39   It is anticipated 
that continued advances in nanoscale manufacturing, including 
those in nanoscale 3D printing,  40   grayscale lithography,  41   and 
multilayer patterning,  42   will enable the translation of these con-
cepts to experimental practice. 

 It is also anticipated that the continued adaptation of 
concepts from the data sciences community to inverse design 
will further augment the optimization of freeform nano-
photonic devices. Concepts such as GLOnets and other newly 
developed data science tools  43   …   47   provide a launch point for 
physics-based neural network models, and it is projected that 
continued research along this line will push the speed and 
capabilities of inverse design platforms. This effort will need 
to be a community effort that is streamlined and coordinated 
through better sharing of design codes and benchmarking of 
device designs. To this end, a central database system has 
been created termed MetaNet  48 , 49   for researchers to upload 
device designs and design code. By working together, a new 
era for inverse photonics design will be ushered in.     
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