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I. ABSTRACT

Robust automated design tools are crucial for the pro-
liferation of any computing technology. We introduce
the first automated design tool for the silicon dangling
bond quantum dot computing technology, which is an
extremely versatile and flexible single-atom computing
circuitry framework. The automated designer is capa-
ble of navigating the complex, hyperdimensional design
spaces of arbitrarily sized design areas and truth tables
by employing a tabula rasa double-deep Q-learning re-
inforcement learning algorithm. Robust policy conver-
gence is demonstrated for a wide range of two-input,
one-output logic circuits and a two-input, two-output
half-adder, designed with an order of magnitude fewer
SiDBs in several orders of magnitude less time than the
only other half-adder demonstrated in the literature.
We anticipate that reinforcement learning-based auto-
mated design tools will accelerate the development of
the SiDB quantum dot computing technology, leading
to its eventual adoption in specialized computing hard-
ware.

II. INTRODUCTION

Recent demonstration of nanoscale logic components
composed of silicon dangling bonds (SiDBs) acting as
quantum dots1 signal the emergence of a new con-
tender in the search for successors to complementary
metal-oxide-semiconductor (CMOS) devices as logic
building blocks. These SiDBs are fabricated on the
hydrogen-passivated Silicon(100)-2×1 (H-Si(100)2×1)
surface with an n-doped bulk and a near surface deple-
tion region1–3. Discrete charge states can be observed
in SiDBs2,4, including positive, neutral, and negative
charge states corresponding to the localization of 0, 1,
and 2 electrons respectively. An n-doped bulk leads
to the tendency for SiDBs to take on negative charge
states in isolation; charges may also be shared between
very closely situated SiDBs3,4. SiDBs can be created
at atomically precise locations by the desorption of in-
dividual hydrogen atoms at the surface with electric
currents applied by the probes of scanning tunneling

microscopes5–7. They can also be individually erased
by a mechanically induced passivation of the SiDB by
bringing a functionalized probe very close to the SiDB6.
SiDBs are also known as atomic silicon quantum dots
in the context that this work is interested in.

The ability to create SiDBs at atomically precise
locations and the exhibited tendency for charge con-
figurations to settle to the ground state constrained
by screened Coulombic repulsion1–3 lends this tech-
nology well for field-coupled nanocomputing (FCN),
a class of devices that employ electric8,9 or magnetic
field effects10,11 for operation. SiDB logic components
demonstrated experimentally by Huff et al.1 provide an
example of this by taking advantage of the charge shar-
ing behavior between closely-situated SiDBs to repre-
sent binary logic states, wherein the position of a charge
in pairs of SiDBs can be used to encode bit information.
A wire can be constructed by placing these SiDB pairs
in series. The study also experimentally verified an OR
gate no larger than 5 nm by 6 nm with two SiDB pairs
at the top as logic input and one SiDB pair at the bot-
tom as logic output, demonstrating logic gates at the
atomic scale.

Rapid exploration of SiDBs outside of experimen-
tal laboratories was enabled by SiQAD12, a computer-
aided design (CAD) tool which offers design features for
SiDB layouts and calibrated simulation models. Mul-
tiple binary-dot logic (BDL) logic gates and circuits
have been proposed based on SiQAD verification12–16.
The authors have experience designing such layouts via
SiQAD12,14 and find this to be a time consuming pro-
cess which requires a significant amount of trial and er-
ror. Designing such layouts via SiQAD is an inherently
time-consuming process that requires an understanding
of the underlying physics of the technology to be able
to navigate the complex, iterative process12,14.

Electronic Design Automation (EDA) software was
essential for the scaling and robust conceptualization of
modern semiconductor chip designs.17 Currently, there
exists no automated SiDB gate and circuit design frame-
work. Other FCN technologies generally have well-
defined logic unit cells and elementary gates which lower
the barrier for logic abstractions and design automation
frameworks18–20. On the other hand, SiDBs offer much
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flexibility with quantum dot placement; this enables the
creation of compact and expressive SiDB gates at the
expense of physical complexity and an increased initial
learning curve for the designers. This can be managed
to an extent with physically-informed design rules, but
this does not fully offset the need for part tweaking ne-
cessitated by surface and environmental variations in
practice. Automated design tools are necessary for the
quick prototyping that is required for SiDB technology
to scale to a practically large and useful scope.

The robust design of an SiDB layout that implements
the logic of a truth table with an arbitrary number of
inputs and outputs is an inherently challenging hyper-
dimensional optimization problem. Several attributes
of the SiDB framework contribute to the difficulty of
conceptualizing and implementing a robust optimiza-
tion algorithm that functions across scales. Firstly, the
problem’s primary objective function is a discrete logi-
cal truth table, meaning that no gradients are available
to help guide the parameters towards the optimal set for
arbitrary inputs. Furthermore, the objective function
is capable of providing useful feedback only at the very
end of the optimization process, as there is no determin-
istic way of determining if a certain track of SiDB place-
ment decisions will lead to a successful design. Binary
feedback for the optimization algorithm is available only
after the final layout design is determined–either all
steps leading up to the final solution were successful
in satisfying all rows the truth table, or not. Secondly,
the optimization space is highly counterintuitive due in
part to inter-DB coupling and quantum mechanical phe-
nomena. It also presents many singularities of invalid
layouts (due to the existence of non-experimentally
characterized positive charge states), as well as sparse
singularities of working layouts.12 Both of these opti-
mization difficulties are faced by drug molecule dis-
covery optimization, where the relationships between
the structures of atoms within and across functional
groups are not known until after the final evaluation of
the molecule.21,22 The drug discovery community has
found success with reinforcement learning algorithms
for traversing optimization spaces with characteristics
similar to those of SiDB placement22, indicating that
similar techniques are likely to be successful for SiDB
layout optimization.

The numerous factors that introduce significant dif-
ficulty in the optimization of SiDB layouts single out
reinforcement learning as an optimization framework
that is uniquely suited for this problem. Double-deep
Q-learning23 is chosen as the optimization algorithm
for SiDB layout optimization given the framework’s
proven ability to determine robust policies in domains
with partially-observed, low-dimensional state spaces,
similar in kind to that of the SiDB design problem.
Reinforcement learning (RL) in general is ideally po-
sitioned to find optimal solutions in the SiDB design

space, where only the final outcome of the optimizer
that can offer a reward directly useful for learning op-
timal layouts24: whether the final layout of SiDBs pro-
duces the desired logic. Since RL is capable of determin-
ing the value of actions in the early stages of optimiza-
tion with respect to achieving the end goal, by learning
the expected value of the maximum sum of all future re-
wards given a particular at any step of optimization, the
algorithm can function within the low-affirmation con-
fines of SiDB layout design. Double-deep Q-learning
in particular is well-suited for SiDB design optimiza-
tion because it helps correct the overestimation of ac-
tion values—a flaw inherent to many RL algorithms in
which the value of actions that lead to positive rewards
in the short term are over-estimated.23 This flaw is exac-
erbated by the rare distribution of rewards throughout
SiDB placement optimization, and would result in non-
convergence if not addressed by double-deep Q-learning.

In this Article, we introduce the first automated de-
signer for SiDB logic layouts. The robust reinforcement
learning framework we built permits design across all
scales of layouts demonstrated thus far in the litera-
ture, as well as for an arbitrary number of inputs and
outputs. It is demonstrated that the designer excels in
discovering design strategies for a wide range of logic
type without a change of hyperparameters and that the
designer demonstrates robustness through convergence
to the same design policy regardless of the random seed
used in the stochastic processes of the algorithm. This
automated designer has demonstrated its utility as a
practical tool, as it has already enabled the creation of
the Bestagon gate library25, an SiDB gate library that
paves the groundwork for higher level SiDB design au-
tomation exploration.

III. RESULTS

To utilize the power of a reinforcement learning agent
as an automated design tool, it is necessary to first cast
the SiDB layout design process as a reinforcement learn-
ing problem. This entails framing the design space as
a Markovian state space, St, at each time step t, choos-
ing the action space, At, update rules, and a method for
learning the maximum cumulative value of all future ac-
tions given the choice of each possible action at general
time step t.24 The reinforcement learning agent starts
with an empty design area between the input and out-
put SiDBs, and at each step of the Markovian double-
deep Q-learning process it places SiDBs in an attempt
to either explore the design space or exploit the best
design policy learned up until the current time step, t.

An iterative SiDB addition scheme was chosen for the
design tool, as illustrated in Fig. 1. The action space at
any time step t is chosen to be the addition of an SiDB
at any valid location within a user-defined area, which is
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Figure 1. Overview of the double-deep Q-learning iterative SiDB dot placement automated design procedure. Starting
from a blank design area located between the input and output wires of the logic circuit, the reinforcement learning agent
is iteratively called to place SiDB dots until either a new working layout is discovered or the maximum number of allowable
SiDB dots are placed. The reinforcement learning agent places a new SiDB dot based on the recommendation of either a
uniformly random exploratory policy, Ap, or a neural network-learned greedy exploitative policy, Aπ. Initially, all actions
are exploratory to train the neural network, and this is slowly annealed as the agent gains experience. The neural network
is composed of three convolutional layers followed by three fully connected layers. It is trained to learn the maximum
attainable future rewards for each action based on the inputted state space at time t, St.

usually defined between the input perturber SiDBs and
the output SiDBs, which are oftentimes in proximity
to a weak spring.12,14 Valid SiDB locations are defined
as any point on the lattice within the design area that
is not already occupied by an SiDB, which would have
been placed in a prior step, or is immediately adjacent
an existing SiDB. SiDBs are not allowed to be adjacent
to each other because this leads to degenerate states

and an over-saturated potential landscape, which has
not been experimentally validated to be constructive to-
wards useful SiDB logic layouts. The action to be taken
in the presence of action space St is either determined
by the exploration policy, Apt , if the agent is explor-
ing the design space, or otherwise by the learned action
policy, Aπt . Initially, 100% of actions are exploratory,
and this is linearly annealed to the minimum rate, 10%,
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by the time that 80% of design time has elapsed. Apt
chooses from the valid action space of state St through
a uniformly random policy. Aπt greedily chooses the
action corresponding to the greatest value outputted
from a convolutional neural network that is fed St as
input, which is trained to estimate the maximum at-
tainable cumulative future rewards for each choice in
the action space. In this manner, SiDBs are iteratively
added to the initially-blank design space, with the pro-
cess terminating either upon the discovery of a newly-
encountered working layout, or after a pre-determined
maximum number of SiDBs are placed and no solution
is found (which corresponds to a losing trajectory).

A neural network is trained to predict the maximum
cumulative value of all future possible actions for an
arbitrary state St by training it based on prior expe-
riences of rewards that were administered to the net-
work, which are accumulated as a result of both the
exploratory and exploitative policies. Towards the be-
ginning of the reinforcement learning process, the neural
network is seldom exploited, and experiences are accu-
mulated through exploration of the design space. The
neural network gradually becomes more accurate, but
a 100% greedy policy is never pursued. A hyperpa-
rameter grid search indicates that a 10% minimimum
exploration rate is beneficial to maintaining an output
of new, diverse SiDB designs in the latter stages of the
reinforcement learning algorithm and preventing over-
fitting to the same handful of high-performing, already-
discovered working layouts. The neural network archi-
tecture is chosen using a grid search, with the final de-
sign consisting of one input shape-preserving, padded
convolutional layer, two non-padded convolutional lay-
ers, and three fully-connected layers, where the output
is of the same size as the entire state space. The convo-
lutional layers encode spatial relationships amongst the
SiDBs, which are then interpreted by the dense fully-
connected layers.

The rewarding strategy is selected such that it is ro-
bust across all scales of layout areas and truth table
sizes. Rewards are selected to have values between -
1 and 1, facilitating training by limiting the scale of
backpropagated prediction error gradients26 and allow-
ing for the use of the same learning rate regardless of
the number of truth table rows. To encourage the rein-
forcement learning agent towards completing the entire
truth table through each SiDB placement, the addition
of a truth table row as a result of an action (i.e., the
addition of an SiDB), is rewarded by 0.4 divided by
the total number of rows in the truth table. Similarly,
to prevent the erasure of progress through the addition
of poorly placed SiDBs, a reward of -0.4 divided by
the total number of rows in the truth table is adimin-
istered for each truth table row loss. Each placement
step, regardless of outcome, is also given a reward of
-0.75 divided by the total maximum number of steps

in an SiDB placement sequence to encourage efficient
choices. Finally, a reward of 1.0 is awarded for newly
discovered working layouts, which promptly terminates
the placement sequence and begins the next one. If a
previously-discovered layout is found, the 1.0 award is
not administered and the placement sequence continues,
in search for more working layouts.

The reinforcement learning automated layout design
algorithm is effective in finding successful design strate-
gies for a diverse range of layouts that span area scales
and truth table logic levels of complexity. As illustrated
in Fig. 2a, the agent is capable of reliably finding design
policies that maximize the average reward administered
per epoch for two input, one output logic circuits. In
Fig. 2b, it is demonstrated that the same agent, uti-
lizing the same neural network architecture and with
unchanged hyperparameter values, is capable of deter-
mining a working design policy for the larger and more
logically complicated two-input, two-output half adder
circuit. The average reward is directly correlated to
the number of solutions found by the design tool, with
a saturated average reward distribution indicating the
convergence to an optimized design policy.

Regardless of the seeds used to initialize the stochas-
tic processes involved in training the reinforcement
learning agent, the algorithm has demonstrated a
propensity to converge to the same set of optimal design
solutions. As illustrated in Fig. 3, given five different
sets of random initialization seeds for the neural net-
work optimization initialization and the reinforcement
learning agent’s exploration policy, it is demonstrated
that different starting policies will eventually converge
to the same design methodology. This indicates that
the design tool is robustly capable of converging to an
optimized action policy, rather than haphazardly find-
ing a set of actions that happen to work. Furthermore,
the first SiDB placement policy that was determined
by all five agents in Fig. 3 are very similar to those de-
termined by human designers in previous works, namely
placing two SiDBs symmetrically around the center axis
of the design canvas, towards the input wires.

IV. DISCUSSION

The SiDB platform technology offers unparalleled
flexibility in logic gate design in comparison to other
FCN technologies; however, harvesting this flexibility
requires a great deal of experience and trial and error
on the researchers’ part. Considering that the silicon
surfaces in practical real world usage may have vari-
ous defects27 that circuits may have to account for, it
is evident that it is unscalable to rely solely on man-
ually designing SiDB logic layouts. From the authors’
SiDB logic design experience12,14, the generated logic
gates are often more compact than their hand-designed
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(a) Average reward administered over training epochs for various two-input, one-output logic gates, for
both the reinforcement learning algorithm and a uniformly random control policy.

(b) Average reward administered over training epochs for a two-input, two-output half-adder, for both the
reinforcement learning algorithm and a uniformly random control policy.

Figure 2. Average rewards gained by the reinforcement learning agent as a result of its actions, along with the results from
a uniformly random control policy. The presence of the saturation of administered awards indicates that the convergence
to an optimized design policy.

counterparts with an order of magnitude time savings.
Further, when considering large scale SiDB systems,
the automated designer can also account for physical
parameter variations due to differing dopant concen-

trations, physical defects, or other external influences,
something that manual design works have yet to develop
design rules or procedures for. As previously mentioned,
the automated designer has already seen practical util-



6

Figure 3. Overview of the evolution of five agents with different random initialization seeds converging to the same optimized
design policy. For the two-input, one-output AND gate, the five agents’ SiDB dot placement probability distributions at
epoch 1 (before training) are all different and are widely spread out across the entire design canvas. After 1, 000 epochs
of designing and training, four of the five agents converge to the same first-dot placement probablility distributions, and
the fifth converges to the same policy through a different distribution. Namely, the automated designer learns to place
two SiDB dots symmetrically around the center axis, towards the input wires—a design choice that is very familiar to the
human-designed circuits presented in the literature.12

ity in assisting with the creation of the Bestagon gate
library25. This work paves the way for the proliferation
of SiDB platform technology by introducing a fast and
robust automated design tool to experienced and in-
experienced quantum circuit designers alike—a crucial
piece required to elevate the technology from a research

curiosity to an industry staple.

V. DATA AVAILABILITY

All code and data will be made available at
https://github.com/rclupoiu/db-layout-designer upon
publication of this manuscript.
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