Enhanced methane conversion in chemical looping partial oxidation systems using a copper doping modification

Lang Qina,1,2, Mengqing Guoa,1,2, Yan Liua,1,2, Zhuo Chenga,1,2, Jonathan A. Fanb, Liang-Shih Fana,⁎

a William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Ave, Columbus, OH, 43210, USA
b Department of Electrical Engineering, Ginzton Laboratory, Spilker Engineering and Applied Sciences, Stanford University, 348 Via Pueblo Mall, Stanford, CA, 94305, USA

\begin{abstract}
Chemical looping partial oxidation (CLPO) is a promising strategy of methane conversion to syngas with low cost and minimal environmental impact. A major challenge is the development of oxygen carriers that have high reactivity, high oxygen carrying capacity, and recyclability. We demonstrate that the addition of a low concentration (1%) of copper dopant to iron-based oxygen carriers can dramatically enhance the reactivity in CLPO process at low temperatures while maintaining the recyclability of these carriers. With the dopant, the methane conversion rate at 700 °C is 470% higher than that of carriers without the dopant. These results are substantiated by \textit{ab initio} DFT + U and thermochemistry analyses. It is noted that operating a chemical looping system at 700 °C can result in energy consumption savings of \textasciitilde35% as compared to a chemical looping operation at 1000 °C. Thus, our findings provide a pathway to significantly lowering the methane reaction temperature in chemical looping systems, which will lead to substantial energy savings with desired oxygen carrier recyclability.
\end{abstract}

1. Introduction

Biomass-generated methane is a renewable and sustainable energy source for the synthesis of syngas and value-added chemicals. It is a topic of immense academic and industrial interest because it is now economically and commercially viable to obtain biomass-generated methane with a quality similar to fossil natural gas. To reduce the material and energy cost of the methane-to-syngas conversion process, it is imperative to identify strategies in methane-to-syngas generation that operate efficiently at low temperatures \cite{1}. Energy savings are particularly important in industry due to its considerable environmental and economic impact. From a process point of view, lowering the temperature of operation will decelerate materials obliteration in harsh reactors.

Methane-to-syngas generation is traditionally achieved using autothermal reforming or dry (CO\textsubscript{2}) reforming. The reforming reactions are highly endothermic and require operating temperatures of 900 °C or above to attain high conversion rate and to minimize the thermo-dynamic driving force for carbon deposition. To reduce these operating temperatures while counteracting carbon deposition, noble metals, such as Pt, Pd and Au are often added to the metal oxide materials as catalytic dopants. However, the addition of noble metals makes these processes costly \cite{2}.

An alternative approach to methane-to-syngas generation is the chemical looping process, which is one of the most promising techniques in the clean energy industry. It is highly efficient for methane conversion without any energy penalty, as required generally by other syngas purification processes. The core of chemical looping technology depends on complex redox reactions involving hydrocarbon molecules absorption and dissociation on metal-oxide based oxygen carrier surfaces, lattice oxygen ion diffusion, oxygen vacancy creation and annihilation at high temperatures, as illustrated in Fig. 1. The cycles of chemical looping partial oxidation (CLPO) process allows continuous generation of high purity syngas with a controllable CO to H\textsubscript{2} ratio and a near-zero CO\textsubscript{2} emission.

Enormous efforts have been spent in the past two decades to improve oxygen carrier reactivity at lower temperatures \cite{2–10}. Pt- or Rh-promoted CeO\textsubscript{2} with a γ-Al\textsubscript{2}O\textsubscript{3} support \cite{1} can lower the reaction...
temperatures induced by the promoters, but at the expense of severe carbon deposition. The modification of ceria with transition metals for the purposes of improving oxygen carrier reactivity has also been investigated [4–7]. However, the addition of Mn in CeO2 oxygen carriers results in a tendency of complete methane oxidation, whereas CO and H2O were found to be the main production in Nb-modified CeO2. Modifications to perovskite materials have also been investigated [8,9], which can increase the capacity of the oxygen carriers, but reduce their selectivity to syngas and particle reactivity with CH4 [10].

To date, iron-based oxygen carriers have been demonstrated as the most promising material system for commercially viable oxygen carrier particles in chemical looping techniques including CLPO [11]. To further improve carrier performance, a general strategy is to incorporate low concentrations of isovalent non-noble metal dopant into the carrier, which can modify its chemical properties without dramatically increasing cost or impacting its phase integrity and high oxygen carrying capacity [12,13]. Isovalent dopants, such as rare earth elements, can provide surface catalytic sites to decrease methane partial oxidation activation energy, thereby improving oxygen carrier reactivity [12]. Nevertheless, due to the fact that isovalent dopants such as La create little Schottky defects, the impact of oxygen vacancy in the isovalent-dopant modified samples is small. It remains highly challenging to find a dopant that can not only facilitate the formation of oxygen vacancies that promote ion transport, but also reduce methane partial oxidation activation energy and even alter the reaction mechanism with a more favorable reaction pathway for methane partial oxidation.

In this work, we report that the aliovalent dopant Cu can universally increase methane conversion rates without losing high oxygen carrying capacity or phase integrity at reaction temperatures as low as 700 °C and overall, 1% Cu-dopant concentration has the best reactivity improvement with lowest cost increase without decreasing oxygen carrying capacity or mechanical strength of iron oxides. Our simulation work indicates that the Cu dopants not only provide active sites on metal oxide surface, but also create oxygen vacancies which will promote ionic diffusion and also further lower methane activation energy.

Fig. 1. Concept of chemical looping partial oxidation with methane.

Fig. 2. SEM images of (a) Fe2O3 and (b) 1% Cu-doped Fe2O3 samples before and after redox reaction. (c) XRD patterns of Fe2O3 (1) before and (2) after 45 cyclic redox reaction compared with 1% Cu-doped Fe2O3 (3) before and (4) after 45 cyclic redox reaction. (d) small range XRD pattern of Fe2O3 and 1% Cu-doped Fe2O3.
2. Experimental

2.1. Sample preparation

1% Cu doped Fe₂O₃ as well as non doped Fe₂O₃ were made by the sol gel method. The sol gel solutions were prepared by dissolving Fe(NO₃)₃·9H₂O (Acros Organics, 99+%, for analysis) with Cu(NO₃)₂·3H₂O (Acros Organics, 99+%, for analysis) stoichiometrically in 1 mol/L HNO₃ (Fisher Scientific, 1.0 N) solution, followed by the addition of citric acid anhydrous (Fisher Scientific, 100.0% assay). The pH value of the aforementioned solutions were adjusted to ∼7.3 by NH₄OH (Fisher Scientific, 28–30%) solution. The whole solution was mixed with ethanol under vigorous stirring. The eventual molar ratio of nitrate salt: citric acid: ethanol was 1:2:2. The solution was concentrated by heating at 270 °C for 1.5 h by hot plate and otherwise ambient conditions. Thus, the obtained precursors were heated in the furnace with ambient air at 600 °C for 3 h to remove organic residues by 1 °C/min heating ramp rate and 6 °C/min cooling ramp rate. Afterwards, this was followed by calcination at 1100 °C for 2 h using 2 °C/min heating ramp rate and 6 °C/min cooling ramp rates. Finally, the samples were moved to a small crucible to calcinate at 1260 °C for 4 h by 2 °C/min both heating and cooling ramp rates.

2.2. TGA test

The as prepared samples with approximately 15 mg were mounted in an alumina crucible, and continuous 15 reduction-oxidation cycles were conducted at four different temperatures from 1000 °C to 700 °C using a Setaram SETSYS Evolution Thermogravimetric Analyzer (TGA). The reduction step was performed using 25% CH₄ (50 mL/min) balanced by inert gas (50 ml/min N₂ and 100 ml/min Helium as the carrier gas) for 5 min. The oxidation step was performed by 25% air (50 mL/min) balanced with inert gas (50 ml/min N₂ and 100 ml/min Helium as the carrier gas) for 5 min. Meanwhile, there is a 10 min flushing step using the same flow rate of inert gas to prohibit the mixing of oxygen and CH₄. Before reduction-oxidation cycles, these powders were treated at 800 °C for 5 reduction-oxidation cycles to activate their reactivity. When analyzing the TGA data, reduction conversion is defined by the following equation:

$$X_r = \frac{w_i - w_f}{w_o} \times 100\%$$

where w_i is the initial weight (mg) of oxygen carriers in TGA, w_f is the weight of oxygen carriers after 5 min reduction of materials by 25% CH₄, and w_o represents the weight of oxygen in initial oxygen carriers.

The definition of oxidation conversion is shown as the following equation:

$$X_r = \frac{w_f - w_t}{w_o} \times 100\%$$

where w_f is the final weight of oxygen carriers after oxidation regeneration, w_t is the weight of oxygen carriers before oxidation regeneration, and w_o represents the weight of oxygen in initial oxygen carriers.

2.3. Phase characterization

These samples were also analyzed using a Rigaku SmartLab X-ray Diffractometer (XRD) with eliminated fluorescence. Scans were run from 20 to 80 degrees at a rate of 1° per minute with an accelerating...
voltage and filament current of 40 kV and 44 mA, respectively. The small range scan of XRD was run from 62 to 65 degrees with a rate of 0.1 °/minute with the same set up of voltage and filament current. All of the XRD spectra were analyzed using PDXL software and identified with the JCPDS database. Scanning electron microscope (SEM) images were examined with a 10 kV and 0.17 nA electron beam. Secondary electron images were obtained with a working distance of 4.1 mm. A Kratos Axis Ultra DLD spectrometer was used to obtain X-ray photoelectron (XPS) spectra. Mg Kα monochromatic X-ray radiation (1253.8 eV) was applied to ensure the optimal peak intensity of Cu. The spectra were collected at room temperature. Binding energy (B.E.) values were referenced to the standard C 1 s binding energy of 284.8 eV. The CasaXPS program was used for data analysis. Shirley-type background and Lorentzian-Gaussian combination were used for data processing.

2.4. DFT calculations

The first-principle calculations were performed within the framework of density functional theory (DFT), using the Vienna Ab Initio Simulation Package (VASP) [14–16]. The generalized gradient approximation of Perdew, Burke and Ernzerhof [17] used to represent the exchange-correlation energy. The projector-augmented wave (PAW) method, with a 400 eV energy cutoff, was used to describe the wave functions of the atomic cores. The tetrahedron method with Blochl corrections was used to set the partial occupancies for the orbitals. While several k-point mesh sizes (e.g., 4 × 4 × 1 up to 13 × 13 × 1) were considered, ultimately the 8 × 8 × 1 Monkhorst-Pack k-point mesh was used for surface calculations to give results that were converged within 1 × 10−5 eV, using the conjugate gradient method. To study the effect of incorporating Cu, a single Fe atom was replaced by a Cu atom in hexagonal unit cells of 240 (2 × 4 × 1) atoms. The Cu/Fe ratio corresponds to 1/96, thus mimicking 1% La concentration.

For CH₄ activation barrier calculations, the climbing-image nudged elastic band (CI-NEB) method was used. This method enabled the stationary points to be mapped out along the minimum energy paths and identify transition states for each of the diffusion processes. Because these paths were directed by force projection, the energy was not necessarily consistent with the force being optimized; thus, the force-based optimizer was chosen to ensure the convergence of the nudged elastic band algorithm.

Based on this model and proposed mechanism cycles above, we can map the energy profile of CH₄ oxidation pathways by CI-NEB method. However, the energy barriers need to be corrected using thermochemistry model due to chemical looping environment. We previously developed a modified Brønsted–Evans–Polanyi relationship to calculate the activation energy for the elementary steps of metathesis reaction [18]. Here, we extend this method to calculate the energy barriers for CH₄ oxidation at high temperature using the equation below:

\[
E_a(T) = E_{a,\text{DFT}} + \alpha(\Delta H_r(T) - \Delta E_{r,\text{DFT}})
\]

where \(E_{a,\text{DFT}}\) corresponds to the forward activation energy barrier at 0 K, which is obtained from CI-NEB calculations. \(\Delta H_r(T)\) is the reaction enthalpy at finite temperature, which is calculated from the individual enthalpies of the initial state and the final state for the constituent elementary reactions. \(\Delta E_{r,\text{DFT}}\) is the difference between the energies of the final state and initial state at 0 K. The variable \(\alpha\) denotes the relative position of the transition state compared to the initial (i.e., \(\alpha = 0\)) or final (i.e., \(\alpha = 1\)) state of the relevant elementary dissociation reaction. It can be obtained by considering which image in the CI-NEB calculations corresponds to the transition state.

To consider this Coulomb repulsion explicitly, we applied DFT + U correction, which consists of combining the DFT with a Hubbard-Hamiltonian term [19,20]. When increasing U from 1 eV to 4 eV, it results in improved values for magnetic moments and band gap as well as better agreement with density of states by experimental IPS spectra. In addition, the band gap becomes too large and occupied Fe 3d states are shifted to too low energies, i.e., U > 4.2 eV. Therefore, we choose...
U = 4 eV to describe the energy required for adding an extra d electron to Fe atom [21].

3. Results and discussion

1% Cu-doped Fe₂O₃ was synthesized using modified Pechini method. SEM images in Fig. 2a and b indicate that 1% Cu-doped Fe₂O₃ has similar average grain size compared with the phase pure Fe₂O₃, which are 4.6 μm and 4.4 μm, respectively. The average grain sizes are identical, i.e. 4.3 μm, after 50 redox cycles in the undoped and doped oxides. This implies that the Cu-doped Fe₂O₃ has less morphological change, which is advantageous in CLPO. The impact of 1% Cu dopant on crystal structure modification was studied by XRD. Fig. 2c and d show the XRD patterns of as-prepared rhombohedral Fe₂O₃ (Fig. 2c (1)) and 1% Cu-doped Fe₂O₃ (Fig. 2c (3)). No impurity phase was observed in 1% Cu-doped Fe₂O₃ samples, indicating Cu is completely doped in Fe₂O₃ in the modification. On the other hand, high resolution XRD spectra suggest a slight red shift of the diffraction peaks in 1% Cu-doped Fe₂O₃ samples compared to Fe₂O₃ (Fig. 2d), confirming that the dopant incurs lattice parameter shrinkage from a and c with 5.036 Å and 13.75 Å in Fe₂O₃ to a and c with 5.035 Å and 13.75 Å in Cu-doped Fe₂O₃. Chemical surface modification analysis is shown in Fig. 3. The Cu 2p peak region has split spin-orbit components with both Cu 2p3/2 and Cu 2p1/2 having satellite features [22,23]. A red shift of Cu 2p3/2 peaks after dopant modification confirms the modification of copper dopant in iron oxide. The O 1s spectra in undoped iron oxide suggests two species on the sample surface (Fig. 3b): metal-oxygen bond (lattice oxide) at 529.3 eV and hydroxyl groups [24] bond at 532.0 eV, respectively. Different with isovalent dopants such as lanthanum, the surface Cu/O ratio is 0.84% from XPS analysis, indicating Cu atoms do not have a tendency to accumulate at the surface. Nonetheless, the ratio of hydroxyl oxide or defective oxide O species expands from 56.9% to 62.8% (Table 1) in 1% Cu-doped Fe₂O₃ compared to undoped Fe₂O₃, which is proved to be helpful for methane activation [25].

Fig. 4a and b show the oxygen carrier conversion rates in 15 typical continuous cycles of methane reduction and oxidation regeneration of 1% Cu-doped Fe₂O₃ and undoped Fe₂O₃ at 700 °C that is lower than conventional operation temperature. The reduction was carried out in 25% methane balanced by inert gas and the regeneration was...
conducted in 25% air balanced by inert gas. All the experiments have been repeated for multiple times and the error bars confirm the high reproducibility of the results. The increase of methane conversion rates is identical in samples of 0.015–0.1 g. The TGA analysis shows that 1% Cu-doped Fe2O3 has dramatically increase the conversion rates in methane conversion and oxygen carriers regeneration compared to undoped Fe2O3. At 700 °C, the average reduction conversion and regeneration rates of 1% Cu-doped Fe2O3 are 474% and 485% higher than that of undoped Fe2O3, respectively, as shown in Fig. 4a and b. The high recyclability of the oxygen carriers is also revealed from Fig. 4a and b. This observation is consistent with the less changing morphology evolution.

Additionally, we studied the reactivity enhancement of Cu modification in a wide range of operating temperatures. As shown in Fig. 4c and d, the reactivity of both methane conversion and oxidation regeneration universally increases between 700 °C and 1000 °C. The methane conversion rates of 1% Cu-doped Fe2O3 are 474%, 409%, 14% and 15% higher than that of undoped Fe2O3 at 700 °C, 800 °C, 900 °C and 1000 °C respectively. The reactivity enhancement is substantial at lower temperature, e.g., 700–800 °C. A high CO selectivity of 90% can be achieved at 800 °C using moving bed reactors [26]. The less significant conversion rate increase is likely associated with dopant-induced high temperature sintering effect.

To gain the insight into the role of 1% Cu doping in the reactivity of Fe2O3, we model the 1% Cu-Fe2O3 slab and examine CH4 activation in this slab system. Recently, Wang et al. employed the DFT + U method to study the water interaction with α-Fe2O3 and revealed that its surface termination can significantly affect gas molecule adsorption [27]. Therefore, we first determined the stable iron oxide surface termination state, assuming Fe2O3 cleaving along the (001) surface, which was proven to be the dominant surface in the X-ray photoelectron diffraction study [28]. A 15 Å-thick vacuum layer was used to separate the surfaces and their images. The use of periodic models eliminates edge effects and allows for a more accurate description of surface relaxation. Depending on the cleavage position and the repeat of iron and oxygen atoms ordering, three possible terminations can be built: O-Fe(1)-Fe(2)-O-, O(Fe-1)-Fe(2)-O-, and Fe(2)-O(Fe-1)-Cu(s-2)-O-. Based on surface free energy calculation for Fe2O3 (001) surface with these terminations, we found Fe(2)-O(Fe-1)-Fe(2)-O-termination is the most stable [29]. Therefore, substitutions were made at the slab with Fe(2)-O(Fe-1)-Fe(2)-O- termination. Using the first oxygen layer as the reference layer s, we replaced Fe(2) at the s + 1 layer with one Cu atom to build the doping system Cu(s + 1)-O(Fe-1)-Fe(2)-O-. Then we used one Cu atom to replace Fe(1) at the s + 1 layer to build Fe(2)-O-Cu(s-1)-Fe(1)-Fe(2)-O-system as shown in Fig. 5. It was found that the surface free energy of Cu(s + 1)-O-Fe(1)-Fe(2)-O-system is 1.35 J/m², while the surface free energy of Fe(2)-O-Cu(s-1)-Fe(1)-Fe(2)-O- and Fe(2)-O-Cu(s-1)-Cu(s-2)-O-system is 1.33 J/m² and 1.38 J/m², respectively. Similarly, we replaced Fe atom in s-4, s-5, s-7 layer, and found the surface free energy of Fe(2)-O(Fe-1)-Cu(s-2)-O- system is 1.35 J/m², while the surface free energy of Fe(2)-O(Fe-1)-Cu(s-1)-Fe(2)-O- and Fe(2)-O(Fe-1)-Cu(s-2)-O-system is 1.34 J/m², 1.35 J/m² and 1.33 J/m², respectively. It indicates that the substitution may occur on the surface or subsurface, which agrees with the experimental finding that Cu dopant atoms do not have a tendency to accumulate at the surface.

In CH4 activation process, adsorbed CH radicals on the surface accepts oxygen atoms from the iron oxide which leads to oxygen vacancy formation. To study the oxygen vacancy formation, the Fe(2)-O-Cu(s-2)-Fe(2)-O- terminated surface was used since it is the most favorable α-Fe2O3 (001) surface at 700 °C. α-Fe2O3 (001) surface has the stoichiometric (Fe–Fe–O3) sequence in the slab geometry with a lateral periodicity represented by a hexagonal crystal lattice. We removed one lattice oxygen atom in the first O3 layer (s layer) to create an oxygen vacancy on the top surface VO(s). Similarly, we removed one lattice oxygen atom in the second O3 layer (s-3 layer) and in the third O3 layer (s-6 layer) to create the oxygen vacancy VO(s-3) and VO(s-6), respectively. The calculated oxygen vacancy formation energies for Fe2O3 (001) surface with Cu dopant are shown in Fig. 6. For pristine Fe2O3 surface, VO(s) is the most energetically favorable oxygen vacancy with formation energy of 258.56 kJ/mol, while the vacancy formation energies for VO(s-3) and VO(s-6) are 292.51 kJ/mol and 342.43 kJ/mol, respectively. Therefore, the oxygen vacancy on the top surface of Fe2O3 is easier to form than the vacancy in the subsurface. In addition, it can be seen that Cu dopant decreases the formation energy of VO(s) for Cu(s + 1)-O(Fe-1)-Fe(2)-O-system, the vacancy formation energy of VO(s) is 178.08 kJ/mol, which is 80.48 kJ/mol lower than that on Fe2O3 surface without Cu dopant. However, for Fe(2)-O(Fe-1)-Cu(s-2)-O-system, the vacancy formation energy of VO(s) is 211.73 kJ/mol which is only 46.83 kJ/mol lower than that on Fe2O3 surface without Cu dopant. It indicated that the closer the dopant is to the oxygen vacancy, the stronger the interaction is. For the subsurface oxygen vacancy VO(s-3) and VO(s-6), Cu doping also results in a decrease of the oxygen vacancy formation energy when Cu dopant is close to the oxygen vacancy. Therefore, Cu doping can significantly facilitate oxygen vacancy formation on the surface and subsurface. We further investigated CH4 activation on Cu doped Fe2O3 surface with oxygen vacancies.

We have found oxygen vacancies play an essential role on CH4 partial oxidation on Fe2O3 surface [30]. Here we further investigate the effect of oxygen vacancy VO(s), VO(s-3) and VO(s-6) on CH4 activation on Cu doped Fe2O3 surface. Upon the first step of CH4 dissociation on the Cu site with a neighboring surface oxygen vacancy Vo(s), the formed CH3 radical may react with FeO, via O-H path where CH3 remains on the Cu site while H atom migrates to the surface oxygen site, or via Cu-H path where the CH3 radical is adsorbed to the neighboring oxygen vacancy site, whereas H remains on the original Cu adsorption site. The calculation shows that Cu-H path is more favorable with a barrier of 73.32 kJ/mol, which is 92.63 kJ/mol lower than energy barrier on pristine Fe2O3 surface. For Cu doped Fe2O3 surface with VO(s-3) vacancy and Cu doped Fe2O3 surface with Vo(s-6) vacancy, the calculated CH4 activation barriers are 103.59 kJ/mol and 146.89 kJ/mol, respectively. Therefore, we conclude that the 1% Cu dopant does significantly lower the energy barrier of CH4 activation on Fe2O3, compared to the control case of undoped iron oxide. Actually, the activity is determined by a series of oxidation state while gradually reduced in the chemical looping combustion process. We also examine 1% Cu dopant effect on Fe2O3 and FeO reactivity. 1% Cu-Fe2O3 has a cubic inverse spinel structure with a lattice constant of 8.391 Å (8.396 Å for Fe3O4). The O anions form a close-packed face-centered cubic (fcc) structure with Fe3+ and Fe4+ ions located in the interstitial sites. Based on this model, we calculate the CH4 activation barrier and found it is 81.3 kJ/mol lower than that on undoped Fe3O4. Also, the barrier of CH4 activation on 1%Cu-FeO is 78.1 kJ/mol lower than that on the undoped surface. Our results confirm that Cu dopants can significantly enhance the catalytic activity of iron oxide for CH4 conversion, which has been observed by the TGA experiments.
reaction. Our findings yield a pathway to dramatic metal oxide oxygen carrier property modification using a relatively simple fabrication process, which will have an impact on future chemical looping particle design.

Author contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Acknowledgements

The service support provided by the Center for Electron Microscopy and the Analysis, and NanoSystem Laboratory at The Ohio State University and the computing time support provided by the Ohio Supercomputer Center are gratefully acknowledged.

References