
367© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim wileyonlinelibrary.com

www.MaterialsViews.com

 Elasticity of Fractal Inspired Interconnects  

   Yewang    Su     ,        Shuodao    Wang     ,        YongAn    Huang     ,        Haiwen    Luan     ,        Wentao    Dong     ,    
    Jonathan A.    Fan     ,        Qinglin    Yang     ,        John A.    Rogers     ,       and        Yonggang    Huang   *   

devices, [ 7 ]  transient energy harvester, [ 8 ]  and other systems 

that require lightweight, rugged construction in thin, con-

formal formats, [ 9 ]  to bio-integrated devices for surgical and 

diagnostic implements that naturally integrate with the 

human body to provide advanced therapeutic capabilities, [ 10 ]  

and further to cameras that use biologically inspired designs 

to achieve superior performance. [ 11 ]  Success of stretchable 

electronics depends on the availability of electronic materials 

and structures (such as the shape of serpentine interconnects 

and transition area of island-interconnect [ 12 ] ) that can be 

highly bent, stretched, compressed and twisted, [ 13,14 ]  in one-

time stretching and cyclic stretching conditions. [ 15 ]  

 One challenge in the development of stretchable elec-

tronics is to achieve large stretchability [ 16,17 ]  without sig-

nifi cantly sacrifi cing the aereal coverage of active devices. 

Fractal-inspired geometric designs for electrical intercon-

nects between islands of active devices provides an effective 

approach, with demonstrated utility in stretchable lithium-

ion batteries, [ 18 ]  epidermal electronics and radio frequency 

antennas. [ 19 ]   Figure    1   illustrates zigzag, sinusoidal and serpen-

tine shapes, produced using a fractal design approach.  

 This paper determines analytically the elasticity of fractal-

inspired interconnects. For an order- n  fractal interconnect of 

arbitrary shape, the tensile stiffness is obtained analytically in 

Section 2. The key parameters governing the tensile stiffness 

are clearly identifi ed. Experiments are carried out to verify 

the elastic stiffness for the order-2 fractal interconnects, and 

the results are shown in section 3.  

  2.     Elastic Analysis of Fractal Interconnects 

  Figure    2  a shows an order- n  fractal interconnect. At each 

fractal order the interconnect has the same, centrosymmetric DOI: 10.1002/smll.201401181
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  1.     Introduction 

 Stretchable electronics [ 1–3 ]  is a fi eld of technology that has 

recently attracted much research interest, partly due to its 

wide-ranging prospects for applications, from sensory skins 

for robotics, [ 4 ]  to photovoltaics, [ 5,6 ]  wearable communication 

small 2015, 11, No. 3, 367–373

http://doi.wiley.com/10.1002/smll.201401181


368 www.small-journal.com © 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

full papers
www.MaterialsViews.com

shape, but the size increases by a factor  η  as the fractal order 

increases by 1. Figure  2 b shows a representative order-1 ele-

ment, and its shape is described by the local Cartesian coor-

dinates ( X , Y ) (Figure  2 b)

    
, ,1 1X X S Y Y S( ) ( )= =

  (1) 

 where the origin of ( X , Y ) is at the center of this cen-

trosymmetric structure; the curvilinear coordinate  S  1  is 

along the arc length of the order-1 structure, with  S  1  = 

0 at the center of antisymmetry (Figure  2 b) such that 

1 1X S X S( ) ( )− = −  and 1 1Y S Y S( ) ( )− = − . The apparent 

length of the representative element (Figure  2 b) is 

( / 2) ( /2) 2 ( /2)1 1 1 1L X S X S X St t t= − − = , where S 1 t   is the total 

length of the representative element. At the two ends of the 

representative element ( /2) ( / 2) 01 1Y S Y St t− = − = .  

 The order-1 fractal interconnect is modeled as a beam. 

Figure  2 c shows the sign convention for the positive internal 

axial force  P , shear force  Q  and bending moment  M . Let  P  1  

and  Q  1  denote the internal forces along the local coordinates 

 X  and  Y , respectively, at the center  S  1  = 0, and  M  1  bending 

moment for the order-1 structure (Figure  2 b.). The axial 

and shear forces and bending moment (at any  S  1 ) are then 

obtained from force equilibrium as
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 where ( ) ( )� = /1 1 1X S dX S dS  and ( ) ( )� = /1 1 1Y S dY S dS . The 

membrane energy is negligible as compared to the bending 

energy such that the energy density is dominated by the 

bending energy per apparent length and is given by
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 where  EI  is the bending stiffness of the order-1 fractal inter-

connect. Substitution of Equation  ( 2)   into Equation  ( 3)   gives 

the energy density
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 Figure 1.    Schematic illustrations of the order-1, 2 and 3 fractal interconnects with the zigzag, sinusoidal and serpentine shapes.
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 are dimensionless parameters that depend only on the shape 

of the order-1 structure, not on its size, and  β  1  represents the 

ratio of total length to the apparent length. 

 The shape of the order- n  is the same as that of the order-1, 

and therefore is represented by X X Sn( )=  and Y Y Sn( )=  

in its local coordinate, where  S n   is the curvilinear coordinate 

along the arc length of the order- n  structure, and the func-

tions  X  and  Y  are the same as those in Equation  ( 1)  . Let  P n   
and  Q n   denote the internal forces along the local coordinates 

and  M n   bending moment at the center  S n   = 0. Similar to 

Equation  ( 4)  , the energy density for the order- n  can be gen-

erally written as

small 2015, 11, No. 3, 367–373
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 Figure 2.    (a) Schematic illustrations of the fractal interconnects with any centrosymmetric shape in a representative element; (b) the curvilinear 
coordinate  S  1  along the arc length and the internal forces  )P  1  and  Q  1  and bending moment  M  1  at the center  S  1  = 0 for the order-1 structure; (c) the 
sign convention for the internal axial force  P , shear force  Q  and bending moment  M .
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 where the apparent length  L n   for order  n  is related to  L  1  

for order 1 by 1
1L Ln

nη= − , the dimensionless coeffi cients 

i
nα ( )  (i = 1,2,3,4) are to be determined, and 

1
i iα β=( )

. The 

axial force, shear force and bending moment in the order- n  

structure are actually the internal forces  P n   -1  and  Q n   -1  and 

bending moment  M n   -1  at the center ( S n   -1  = 0) for order  n -1. 

Similar to Equation  ( 2)  , force equilibrium then gives  
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 The energy density for order  n  is the integration of that of 

the order  n –1,
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1S Snt

n
tη= − . Substitution of Equations  ( 6)   and  ( 7)   

into Equation  ( 8)   gives the recursive relation
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 where the additional dimensionless shape parameters are
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 Equation  ( 9)   can be rearranged to an explicit (non-recur-

sive) relation
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 For relatively large size increase � 1η  at each fractal 

order, the above equation can be signifi cantly simplifi ed to
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 A fractal shape at each order can be given 

in the Cartesian coordinates  Y  = Y ( X ), such as 

π= − − ≤ ≤( / 2)sin(2 / )( /2 /2)1 1 1 1Y H X L L X L  for the sinu-

soidal shape in Figure  1 b, where  H  1  is the apparent height of 

the order-1 representative element (Figure  2 b). The dimen-

sionless shape parameters are expressed as
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 where  β  1  is the ratio of total length to apparent length, and 

all other shape parameters depend only on  β  1  for each given 

fractal shape. For example, for the zigzag shape in Figure  1 a, . 

 For an order- n  fractal interconnect between two active 

device islands with the spacing  L , the tensile stiffness for a 

representative element of apparent length  L  is given by
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 For relatively large size increase � 1η  at each fractal 

order, substitution of Equation  ( 12)   gives
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 to be independent of  η . It decreases as the fractal order  n  

increase (because β > 11 ), and depends on the fractal shape 

through β β β β β( )−⎡⎣ ⎤⎦
− / / 41

1
2 4

2
4
2

3
n . Here  β  2 ,  β  3  and  β  4  all 

depend only on the  β  1  for each fractal shape. For example, 
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2 4
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3
n  becomes β β( )−7 1 / 7681 1
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zigzag shape.  Figure    3   shows the normalized tensile stiffness 

/3L K EIn)(  versus the ratio of total length to apparent length 

 β  1  for the zigzag fractal shape with the fractal order  n  ranging 

from 1 to 4. It is clear that the fractal interconnect becomes 

more compliant as the fractal order  n  or the total length (rep-

resented by  β  1 ) increases. The tensile stiffness is validated 

by the fi nite element analysis (FEA). The numerical results 

shown in Figure  3  for the size ratio  η  = 10 across each order 

agree well with Equation  ( 15)  . The normalized tensile stiff-

ness for the zigzag, sinusoidal and serpentine fractal shapes 

and the fractal order  n  = 2 in  Figure    4   suggests that, for the 

same ratio of total length to apparent length  β  1 , the depend-

ence on these three shapes is relatively weak.    

  3.     Experiments and Concluding Remarks 
 Experiments were performed to examine the deformation 

in a representative fractal interconnect structure.  Figure    5   

shows micrographs collected at the original and stretched 

states of a Cu trace cut by laser milling; the cross sectional 

dimensions of the trace are 60 μm×60 μm and the apparent 

length is 4 mm. The interconnect is not adhered to a substrate 

except its ends, sometimes referred to as ‘free-standing’. [ 20 ]  

Stretching of each fractal shape was repeated 3∼5 times and 

all the data points are plotted together to compare with theo-

retical predictions. Figure  5  also shows the measured force 

versus nominal strain for zigzag, sinusoidal and serpentine 

fractal shapes, which agrees well with the analytic model in 

Section 2 without any parameter fi tting. Here the nominal 

strain is defi ned as the ratio of the stretched displacement to 

the apparent length  L  of the interconnect. The small devia-

tions between experiments and analytical predictions may 

result from the equipment’s limited capability to accurately 

dictate very small forces (<10 mN). The repeating measure-

ment of stretching verifi ed the repeatability and robustness 

of the measurements.  

 In summary, the fractal-inspired geometric designs pre-

sented in this study provide both key features that are con-

tradicting in most of the other stretchable electronics designs: 

large stretchability and high aerial coverage of active devices. 

An analytic method is developed to determine the tensile 

stiffness of fractal interconnects of arbitrary order  n  and in 

arbitrary shape; the tensile stiffness is clearly expressed by a 

set of non-dimensional parameters; experimental measure-

ments in tensile stiffness agree very well with the analytic 

predictions. 

 The fractal interconnects, in general, are much longer 

than the straight one, which leads to undesired increase 

in the electric resistance. This can be overcome by using a 

larger cross section of the interconnects, for which the elastic 

stiffness is particularly important because their deforma-

tion modes tend to be in-plane bending instead of buckling. 

It is helpful to avoid interfacial peeling under stretching as 

well. [ 21,22 ]   

  4. Experimental Section      

  Fabrication of the Fractal Structures : Copper foils (Annealed 
Alloy 110, Electro Tough Pitch, smooth finish on both sides, 
All Foils Inc.) were laminated against a flat surface using 
water soluble tape (3M). A laser milling machine was used to 
cut out the different traces precisely defined by a CAD file. An 
infrared (wavelength 790∼820 nm) laser beam with a power of 
0.10 Watt runs 3 passes along the exterior of the defined edges 
at a speed of 2.0 mm s −1  to cut vertically through the copper 
foil. Excessive material was removed after the laser milling and 
the desired traces were left on the flat water-soluble tape for 
ease of handling. 

  Testing of Force–Displacement Curve for the Fractal Struc-
tures : The water-soluble tape on the clamping pads (squares 
connected to the ends of the traces, Figure  5 ) was removed fi rst 
and then the pads were clamped onto the fi lm-tension clamps 
of a Dynamic Mechanical Analyzer (Q800, TA Instruments). The 
backing soluble tape was then dissolved. The fractal traces were 
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 Figure 3.    The normalized tensile stiffness ( )/3L K EIn  versus the ratio of 
total length to apparent length  β  1  for the zigzag fractal shape with the 
fractal order  n  ranging from 1 to 4. Results from the analytic model and 
FEA agree very well.
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stretched at a rate of 0.05 mm s −1  while forces were recorded 
every 2 seconds.  
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