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Abstract: Topology-optimized metasurfaces are thin film optical devices that have received 
much interest because they support ultra-high diffraction efficiencies. An important design 
consideration is ensuring that devices are insensitive to imperfections arising from realistic 
fabrication processing. We show that topology-optimized metasurfaces can be made robust by 
incorporating the performance of geometrically eroded and dilated devices directly into the 
iterative optimization algorithm. We additionally apply topology optimization to refine 
conventional designs and make them more robust. Unexpectedly, we find that devices robust 
to systematic erosion and dilation variations are also robust to random periodic perturbations. 
An analysis of the optical modes of robust devices indicates that robustness is enforced via 
highly complex and non-intuitive interactions between these modes and cannot be enforced 
using simple design rules. These concepts can more generally address other fabrication 
imperfections, such as thickness and refractive index variation, and can extend to other 
diffractive and nanophotonic platforms. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Metasurfaces are optical devices that can control light with capabilities exceeding those of 
bulk refractive and scalar diffractive optics [1–4]. They are powerful tools for wavefront 
control [5–7], imaging [8–10], sensing [11,12], and many other applications in photonics 
[13,14]. An emergent class of metasurface designs is based on topology optimization, which 
uses numerical adjoint-based methods to produce devices with unusual geometries and non-
intuitive dynamics. This technique has been used to design photonic crystals [15], integrated 
photonics devices [16,17], and metamaterials [18–24] with superior performance metrics than 
those based on conventional designs. 

A principal challenge in translating metasurface designs from theory to experiment is the 
fabrication of nanoscale features. Patterning [25–27], thin-film etching, lift-off, and additive 
manufacturing [28] all introduce inevitable geometric deviations between experimental 
devices and ideal, theoretical designs. Some of these deviations, such as sidewall roughness, 
are random. Others, such as sloped sidewalls, over- and under-dosing during patterning, and 
over- and under-etching, are more systematic. Figure 1(a) shows scanning electron 
microscope (SEM) images of a representative topology-optimized silicon device layout 
patterned using two different electron beam doses, which results in geometric variations. The 
device shown in Fig. 1(b) is more optimally dosed and features small holes approximately 50 
nm in diameter, while the device in Fig. 1(c) is clearly underdosed and the small holes 
disappear. It is not immediately obvious whether these holes are critical to the operation of 
this device, but such variations are potentially of great concern given the utility of deeply 
subwavelength features in metasurfaces. It is therefore imperative that devices are designed to 
be robust and that they maintain high performance even with fabrication process variations. 
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Fig. 1. (a) Top view of an ideal pattern of a representative topology-optimized metasurface 
section, with silicon in gray and air in blue. (b,c) SEM images of the device fabricated with (b) 
near-optimal and (c) strongly underexposed dosing. Differences in fine spatial features are 
noted. Scale bar: 500 nm. 

In this study, we examine methods for the robust design of topology-optimized 
metasurfaces and the underlying physical principles of robustness. As a model system, we 
analyze periodic silicon deflectors, termed metagratings, for study. We show that robustness 
to systematic geometric deviations in the form of geometric erosion and dilation can be 
incorporated into the iterative optimization process, and we capture these distortions 
experimentally. This study builds on prior work in our group [18], where we applied such 
robustness criteria to the design of large angle metagrating deflectors, and it validates our use 
of erosion and dilation as metrics for robustness. We also show that these concepts can be 
used to introduce robustness into conventional metasurface designs and can apply to other 
forms of fabrication imperfections, such as thickness or refractive index variation. 

2. Modeling fabrication errors 

To capture geometric variations in a quantitative manner, we will analyze devices that are 
geometrically eroded and dilated relative to the ideal pattern. While these geometric 
perturbations do not capture all possible fabrication variations, they do mimic the effects of 
certain systematic errors, such as over- and under-dosing during patterning and over- and 
under-etching. The use of erosion and dilation as robustness metrics was previously 
demonstrated in the design of topology-optimized photonic crystals [29]. 

To specify the eroded and dilated geometries of an ideal pattern comprised of two 
materials with different refractive indices, we first define the refractive index distribution of 
the ideal pattern, ( )rρ . r represents position, and the device and background refractive index 

values are normalized to 1 and 0, respectively. A blurred version of the pattern, ( )rρ , is 

produced by convolving ( )rρ with the Gaussian distribution: 
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The spread of the Gaussian filter, σ , corresponds to the blur radius and is determined by 
a length scale in the fabrication process that corresponds with patterning resolution. In our 
subsequent analysis, we setσ to 20 nm, which is the nominal beam size in our electron beam 
lithography tool. The eroded and dilated patterns, ( )rρ , are produced by thresholding the 

blurred pattern: 
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The parameterη is the midpoint of the threshold filter and is varied between 0 and 1. Values 

ofη greater and less than 0.5 generate eroded and dilated device patterns, respectively. We 

note that with this method, regions with greater local geometric curvature undergo larger 
geometric shifts upon thresholding, compared to regions with lower local geometric 
curvature. Compared to perturbation models that erode and dilate boundaries without 
consideration of local curvature, our model more accurately captures realistic fabrication 
errors. 

To quantify the amount of erosion and dilation with a single parameter, we define the 
edge deviation, Δ , which is related to the blurring and thresholding parameters: 
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The edge deviation is physically intuitive and represents the distance that a semi-infinite flat 
edge will shift. Devices with negative and positive edge deviations correspond to those that 
have been eroded and dilated, respectively. To visualize these geometric perturbations, Fig. 2 
shows eroded and dilated versions of the device depicted in Fig. 1 with −10 nm and +10nm 
edge deviations, respectively. 

 

Fig. 2. Schematics of the metasurface from Fig. 1, in which the ideal pattern is eroded and 
dilated with edge deviations of −10 nm and +10 nm, respectively. Figure shows silicon in gray 
and air in blue. The dashed red line in each panel represents an outline of the ideal device. 
Scale bar: 500 nm. 

3. Robustness in topology-optimized metasurfaces 

In our metasurface topology optimization method, we begin with a random distribution of 
refractive indices, ( )rρ , which comprise a continuum of values bounded by the device and 

background indices. Our goal is to maximize Figure of Merit (FoM), which for metagratings 
is the absolute efficiency of light deflected to the desired diffraction channel. Absolute 
efficiency is defined as the intensity of light transmitted to the desired diffraction order 
divided by the incident light intensity. For each iteration, we perform forward and adjoint 
electromagnetic simulations to compute the FoM gradient at each pixel of the device: 

 .
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∂

∂
=  (5) 

This gradient specifies perturbative changes in the refractive index at ( )rρ that improve the 

FoM. Constraints are added to the optimization to ensure that the final pattern converges to a 
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binary design comprising only two refractive index values. Details on the optimization can be 
found in [18]. 

Devices designed in this manner are not intrinsically robust and are highly sensitive to 
small geometric variations. With a representative topology-optimized metagrating, Fig. 3(a) 
shows the absolute efficiency of the device as a function of edge deviation. The device 
consists of 325 nm tall, polycrystalline silicon patterns on a fused silica substrate, operates at 
a wavelength of 1050 nm, and deflects normally-incident TM-polarized light to 75°. 

 

Fig. 3. (a) Absolute efficiency as a function of geometric edge deviation for a topology-
optimized silicon metagrating. (b) Top view SEM images showing devices patterned with 
near-optimal and suboptimal dosing. Top left insets: theoretical unit cells for the respective 
edge deviations. Scale bars: 500 nm. 

Historically, such high-angle metagratings have proven difficult to design with high 
efficiencies but are of great interest in areas such as spectroscopy and large-numeric-aperture 
lenses for imaging [18]. 

The device exhibits a peak theoretical efficiency of over 97% when ideally patterned (i.e., 
with zero edge deviation). However, the device efficiency greatly diminishes as the 
magnitude of edge deviation increases. We experimentally capture these trends in device 
efficiency as a function of edge deviation by patterning devices with different levels of 
electron beam lithography dosing. The devices are fabricated on a single sample so all other 
fabrications parameters such as etch characteristics or material thickness are the same 
between the devices. The experimental data most closely fit a theoretical edge deviation range 
from +0.8 to +8.2 nm, which was determined using a least-squares fit between the 
experimental and simulated efficiency trends. The trends in experimental efficiencies 
generally match well with dilated theoretical trends and indicate that this particular 
fabrication batch was slightly overdosed and/or overetched. Representative SEM images of 
devices patterned with the highest and lowest dosages are presented in Fig. 3(b) and agree 
well with theoretical models, shown as insets. Key features in the model with small edge 
deviation, such as gaps and holes, are faithfully reproduced in the experimental sample. 
Similarly, the model with large edge deviation accurately predicts the loss of small shapes, as 
found in the experimental device. 

Such extreme sensitivity to small geometric deviations highlights the difficulty of reliably 
fabricating topology-optimized devices: a theoretical precision of ±1 nm is required for this 
particular metagrating to support efficiencies greater than 80%. Furthermore, we observe a 
decrease in experimental efficiencies compared to theoretical values for devices fabricated 
with edge deviations near zero. This decrease is likely due to the sensitivity of the device to 
other non-systematic geometric perturbations from fabrication. As such, we were unable to 
produce samples with over 80% experimental efficiency. 

4. Robustness control 

To design devices that are less sensitive to edge deviation, we modify our topology 
optimization technique to account for systemic geometric errors that may occur during 
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fabrication. In versions of topology optimization that do not account for robustness, gradients 
to the FoM with respect to refractive index are computed for only the ideal device pattern. In 
our modified method incorporating robustness, we compute FoM gradients for ideal, eroded, 
and dilated patterns for each optimization iteration. With this approach, eroded and dilated 
patterns must be calculated for devices comprising a continuum of refractive index values. As 
such, we modify our thresholding function used to generate eroded and dilated versions of the 
device with the following: 
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The parameter β represents the degree of refractive index binarization. In the binary limit

β → ∞ and Eq. (3) is recovered. In addition, this thresholding function is differentiable, as 

required by our optimization. 
A schematic illustrating our incorporation of robustness during a single topology 

optimization iteration is shown in Fig. 4(a). We begin with the base pattern and first apply 
blurring and thresholding filters to generate an eroded pattern, eρ , and dilated pattern, dρ , 
with a desired value of edge deviation. Next, we compute separate gradients, qG , for each of 
the three patterns, qρ . Here, the three patterns are indexed by q . At this stage, the three 
gradients act to improve the FoM for three different patterns. To produce a single gradient of 
the ideal pattern from these three gradients, we project the gradients from the eroded and 
dilated patterns to the ideal pattern using the chain rule. The final gradient used to modify the 
ideal pattern is computed as: 
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The weights, ,qw  allow tuning of the magnitude of robustness enforcement in the 

optimization. We set qw to be 0.5 for the eroded and dilated gradients and 1 for the ideal 

gradient. 

 

Fig. 4. (a) Flow chart of one topology optimization iteration with robustness enforcement. (b) 
Theoretical absolute efficiencies of robust and non-robust topology-optimized metagratings 
that deflect normally incident, TM-polarized light to 75°, for differing edge deviations. 

Devices produced with this procedure exhibit much greater robustness to edge deviation 
variations than their non-robust counterparts. As a proof-of-concept, we designed a 
metagrating that is robust to edge deviations of ±5 nm with the same design parameters as the 
device in Fig. 3. The calculated efficiencies of this fully optimized device as a function of 
edge deviation are plotted in Fig. 4(b), together with those of the non-robust device from Fig. 
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3(a). The topology-optimized device designed with robustness maintains an efficiency above 
90% for edge deviations ranging from −4 to +3 nm, and an efficiency above 80% for edge 
deviations ranging from −6 to +5 nm. Its peak efficiency at zero edge deviation is 95%, which 
is lower than the peak efficiency of the non-robust device. This difference in peak efficiency 
can be attributed to the fact that the incorporation of robustness serves as a design constraint 
and yields an inherent tradeoff between peak efficiency and robustness. Devices designed to 
be robust for larger ranges of edge deviation than those used here will be even more robust to 
geometric perturbations at the expense of further reductions in peak efficiency. 

 

Fig. 5. (a) Absolute efficiency as a function of edge deviation for a topology-optimized silicon 
metagrating designed with robustness enforcement. (b) Top view SEM images showing 
devices patterned with near-optimal and suboptimal dosing. Top left inset: theoretical unit cells 
for the respective edge deviations. Scale bars: 500 nm. 

Figure 5(a) shows experimental efficiencies for the robust device in Fig. 4. Similar to the 
analysis presented in Fig. 3(a), a set of devices is fabricated with varying dosages. The 
experimental efficiency values match well with the trends of the simulated devices. SEM 
images of the devices patterned with highest and lowest dosages, corresponding to edge 
deviations of +1.7 to +8.9 nm, are shown in Fig. 5(b) and exhibit good qualitative agreement 
with the target, theoretical geometries. The robust device has measured efficiencies as high as 
88%, which is 10% higher than the highest efficiency non-robust device. Importantly, devices 
possessing edge deviations near zero all exhibit high efficiencies with no observable drop-off 
in efficiency, indicating that these devices are tolerant to systematic errors incurred during 
fabrication. 

5. Robust optimization of conventional metasurface designs 

While robustness must be specifically engineered into topology-optimized metasurfaces, 
conventional phased-array metasurfaces that deflect light to modest angles already benefit 
from some measure of intrinsic robustness. The inset in Fig. 6(a) shows a metasurface 
designed following conventional design strategies [30]. The device consists of 580 nm tall 
polycrystalline silicon posts on a glass substrate and deflects 1050 nm, TM-polarized light to 
40°. The curve in Fig. 6(a) shows that this device is very robust as a function of edge 
deviation. This result is not altogether unsurprising because these phase-array designs 
typically rely on an adiabatic sampling of the desired phase profile, where adjacent posts are 
similar in size. 
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Fig. 6. (a) Absolute efficiency as a function of edge deviation for a conventionally designed 
40° metagrating deflector. Inset: top-view of a unit cell. (b) Red: Top-view unit cell and 
corresponding absolute efficiency curve of a conventionally designed 75° metgrating deflector. 
Blue: Top-view unit cell and corresponding absolute efficiency curve of a topology-refined 
metagrating using the device in red as a starting point. Scale bars: 250 nm 

However, such intrinsic robustness does not necessarily hold as the deflection angle 
increases and the size difference between adjacent posts becomes exaggerated. In this regime, 
we are no longer guaranteed intrinsic robustness to edge deviations. The red inset in Fig. 6(b) 
shows a metasurface designed to deflect light to 75° with the same operating wavelength and 
device thickness. The red curve in Fig. 6(b) shows the corresponding robustness 
characteristics of the device. While the device shows a nominal 81% peak efficiency, edge 
deviations of only ±3 nm cause the efficiency to quickly plummet below 40%. This device is 
not robust to erosion and dilation. In order to make this device more robust, we can apply 
topology optimization with robustness controls. 

We begin by applying a blurring filter to the conventionally designed posts, which 
prevents the optimization from getting caught in the local optimum. Then, we apply one 
hundred steps of topology optimization with robustness enforcement to the blurred structure. 
Such a procedure requires around one-third to one-fourth of the computational resources as a 
full topology optimization. The resulting topology optimized structure is shown as the blue 
inset in Fig. 6(b). The blue curve shows the corresponding robustness characteristics of the 
refined structure. Not only is the resulting structure notably more robust to edge deviations, 
the peak efficiency of 85% is also higher than that of the original structure. 

While our previous studies have shown that using conventional structures as starting 
points typically results in worse performance than fully randomized starting points [21], such 
a procedure is still of interest due to the high computational cost of topology optimization. 
With this framework, previously designed metasurfaces can be made more robust by applying 
an abridged topology optimization step. 

6. Robustness under random local deformations 

In this section, we examine how devices designed with robustness criteria respond to random, 
local perturbations. Such deformations mimic more stochastic fabrication errors, such as 
sidewall roughness stemming from imperfect liftoff, resist tail residue, or material 
resputtering during etching. For our analysis, we will examine metagratings with random 
perturbations added to the grating unit cell, meaning that these perturbations are periodic in 
nature. While these perturbations are not random across an entire macroscopic device, as 
would be expected in an experimental system, they serve as an approximation to realistic 
sidewall roughness and are computationally tractable to analyze. This type of analysis is 
similar to those previously performed on mechanical systems [31]. 

Returning to our topology optimized devices, we introduce local perturbations as random 
elastic deformations, using a formalism described in [32]. First, the coordinates of each pixel 
in the unit cell are displaced to a random nearby position, with the coordinate transformation 
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represented by a displacement vector field. The displacement field is then convolved with a 
Gaussian filter to ensure that the resulting deformations are smooth. This process is illustrated 
in Fig. 7(a) using a semi-infinite edge as our ideal pattern. Box I shows a random 
displacement field with an average displacement of 6 nm and a Gaussian filter with spread of 
10 nm. For the case of a semi-infinite edge, only the displacement field near the edge 
contributes to deformations, as shown in Box II. This coordinate transformation results in the 
elastic deformation shown in Box III. The dashed red lines indicate 6 nm displacement values 
from the ideal edge. To further visualize these elastic deformations, Fig. 7(b) displays circular 
shapes that have been transformed using differing displacement values. At high displacement 
values, new topological features, such as holes and islands, begin to appear. 

To analyze the impact of local deformations on device performance, we apply random 
deformations to our non-robust device from Fig. 3 and our robust device from Fig. 5. We 
consider absolute displacement values ranging from 2 to 10 nm, and one hundred different 
random deformations are applied to each device for each displacement value. Histograms of 
the resulting device efficiencies are plotted in Fig. 7(c). The histograms of the non-robust 
devices indicate that this metagrating design is highly sensitive to random perturbations. For 
displacements of only 2 nm, the distribution already shows a broadening of efficiency values, 
albeit with values mostly above 80%. For larger displacements, the distribution broadens 
substantially, and for 8 nm displacements, the majority of devices have efficiencies below 
80%. 

 

Fig. 7. (a) Schematic showing the incorporation of random local deformations on an ideal, 
linear edge. I. Random displacement field with an average displacement of 6 nm and Gaussian 
spread of 10 nm. II. Displacement field of interest along a semi-infinite edge. III. Resulting 
transformed edge. Dashed red lines indicate ±6 nm displacement values. (b) Representative 
random local deformations (red lines) of ideal circular shapes (black lines), for varying 
displacement values. (c) Histograms of absolute efficiencies of one hundred random local 
deformations of non-robust and robust devices. Insets: representative unit cells of deformed 
structures. 

Unexpectedly, we find that the device designed to be robust to erosion and dilation 
perturbations is also robust to random perturbations. For displacements of 2 and 4 nm, the 
efficiency distributions are narrowly peaked, and nearly 90% of the devices with 4 nm 
displacement have efficiencies over 90%, which is within 5% of the value of the ideal device. 
The efficiency histogram begins to visibly broaden for a displacement of 6 nm. This 
displacement value is near the edge deviation value used for robustness design. For these 
deformations, the median device efficiency is 91%, and 90% of the devices still have 
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efficiencies over 80%. While the efficiency histograms continue to broaden for increasing 
displacement values, they still comprise a narrower distribution with higher values compared 
to those of the non-robust device. These histograms suggest that devices designed to be robust 
for a given range of edge deviations are also robust to random deformations, provided that the 
random deformation length scales are smaller than the edge deviation parameter. 

7. Mechanisms for robustness 

To provide insight into the mechanisms for robustness, we examine the optical modes of the 
robust metagrating design from Fig. 5 under different geometric perturbations. We utilize 
coupled Bloch mode analysis to solve for the optical modes of the device and their relative 
contributions to device efficiency. Details pertaining to this calculation can be found in 
[33,34]. To summarize, we treat the metagrating as a vertical Fabry-Perot cavity that supports 
n propagating Bloch modes. The efficiency contribution of the ith mode (ordered in decreasing 
neff) is computed as the difference in diffractive efficiency of the device utilizing the first i 
and i-1 modes. 

 

Fig. 8. (a) Absolute efficiency for the robust metagrating decomposed by contribution from 
each Bloch mode as a function of edge deviation. Modes are sorted in descending order of 
effective index. (b) Effective indices of the Bloch modes from (a). (c) H-field profiles of the 
thirteen propagating Bloch modes of the ideal pattern. 

One may naively expect that robust devices have optical modes that are relatively 
insensitive to geometric perturbations. Our mode analysis shows that this is not the case. 
Figure 8(a) shows how the efficiency contribution from the different Bloch modes varies as a 
function of edge deviation, for our robust metagrating. It is evident that in the regime of 
robust operation (i.e., edge deviations from −4 to +3 nm), the efficiency contribution from 
each mode varies for differing edge deviations. In addition, neff of each mode varies as a 
function of edge deviation, in a manner that is highly mode dependent as shown in Fig. 8(b). 
This variation can be significant, as we observe that the mode with the lowest neff only exists 
for edge deviations larger than −3 nm and is otherwise cut off. These variations in mode 
characteristics as a function of edge deviation can be attributed to the strongly varying 
structure of the modes, shown in Fig. 8(c), which range from highly confined in the silicon to 
higher order and air-like. This analysis indicates that robust devices support multiple modes 
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that possess special and optimized combinations of refractive indices and scattering properties 
as a function of edge deviation. While these modes evolve and interact in different ways for 
different edge deviations, they nonetheless enable high efficiency diffraction into the desired 
diffraction order. 

We also perform a similar analysis for the robust metagrating undergoing random, local 
deformations. Figure 9(a) shows the efficiency contribution from the different Bloch modes 
for one hundred different locally-deformed devices. These devices are taken from the 
previous section and have an average displacement of 6 nm. This plot indicates that while the 
total device efficiency is high for most devices, there exist variations in mode contribution 
that are a function of the detailed geometric perturbations. The scope of random, geometric 
variation can be visualized in Fig. 9(b), which shows unit cell images of the top twelve 
highest efficiency devices from the distribution. This analysis suggests that these devices are 
robust to local geometric deformations for similar reasons they are robust to systematic 
geometric deformations: while the modes evolve and interact in different ways for different 
local perturbations, they work together in a manner that enables high efficiency diffraction. 

 

Fig. 9. (a) Absolute efficiency of all one hundred variants of the robust metagrating, deformed 
with 6 nm average displacement. Devices are sorted in increasing order of efficiency, and the 
efficiency contribution per Bloch mode is plotted. (b) Patterns of the twelve highest efficiency 
devices from Fig. 8(a). The absolute efficiencies of each device are displayed. 

8. Additional forms of robust optimization 

In all the above analyses, we show that topology optimization allows us to incorporate 
robustness to specific geometric variations in the form of erosions and dilations of the pattern. 
More generally, topology optimization allows us to design gradients that enable robustness 
against other forms of fabrication imperfections. As an immediate extension, robustness 
against device layer thickness variations can be optimized using the following gradient: 

 .t t
t

GG w=  (8) 

tG are the gradients for devices with smaller, ideal, and larger thicknesses and tw represent the 
corresponding weights. 

Additionally, this technique can be applied to robustness beyond purely geometric 
fabrication variations. As an example, we explore robustness to variations in the refractive 
index of the dielectric material, which can arise from variations in material density, porosity, 
and crystallinity. For silicon, these dielectric properties strongly vary as the material ranges 
from amorphous to polycrystalline and monocrystalline [7]. The corresponding gradient is: 
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In this case, the various iG  give the gradients for devices with refractive indices in that are 
lower, ideal, and higher than the target index 0n . 

As a point of reference, we analyze the performance of our prior topology-optimized 
devices undergoing ±10% changes in refractive index. The target refractive index for our 
devices is 0n  = 3.57 for polycrystalline silicon at a wavelength of 1050 nm, yielding an index 

range from 3.2 to 3.9. Given the well-characterized nature of silicon deposition techniques, 
this range of index variation is not typically a concern during device processing. In other 
common dielectric material choices such as TiO2, however, there is less control in materials 
processing, and variations in refractive index as large as 20% are observed [35]. 

Figure 10(a) plots the absolute efficiencies as a function of refractive index for the two 
topology-optimized metagrating deflectors from Figs. 3 and 5. Both devices have limited 
resilience to changes in refractive index, with comparable sensitivities to refractive index 
variations. 

 

Fig. 10. (a) Absolute efficiency as a function of refractive index for metasurfaces that are not 
robust (from Fig. 3, red) and robust (from Fig. 5, blue) to edge deviations. (b) Absolute 
efficiency as a function of refractive index for a device designed to be robust to refractive 
index variations. Inset: top view of a unit cell of the device. Scale bar is 250 nm. Black dashed 
line represents the target refractive index of n0 = 3.57. 

Now, we use topology optimization to design silicon metagratings that are robust to 
refractive index variations. Here, we compute gradients for three devices with the same 
physical pattern, but with changes of −5, 0 and +5% in refractive index, corresponding to n = 
3.39, 3.57 and 3.75, respectively. The device was optimized for 350 iterations from a random 
starting point. The performance of the final device as a function of refractive index is given in 
Fig. 10(b). The device exhibits an absolute efficiency exceeding 80% across an index range of 
n = 3.3 to 3.8, doubling the range of devices designed without refractive index robustness. 

Edge, thickness, and refractive index deviations are just three examples of fabrication 
imperfections. The true power of topology optimization is that we can utilize it to design 
robustness against a broad range of parameters, so long as a proper gradient can be defined. 
Furthermore, topology optimization is not limited to only one robustness objective at a time, 
as robustness to multiple objectives can be generally achieved by summing up the individual 
gradients of each objective. As an example, a three-parameter robust gradient would take the 
following form: 
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ijk ijk
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w GG
ρ
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∂

=   (10) 

Each summation index represents a different robustness parameter, and ijkw , ijkG , and ijkρ are 

the corresponding weights, gradients and modified patterns. In general, for n robustness 
parameters, this optimization would require simulations on 3n different patterns. Sufficient 
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parallelization and/or judicious sampling of the parameter space could enable large-scale 
robust optimizations. 

9. Conclusion 

We present a general method for designing robust metasurfaces using topology optimization. 
Robustness is incorporated directly into the iterative optimization process by simulating 
geometrically eroded and dilated devices during each iteration. We find that robust 
metasurfaces are relatively insensitive to edge deviations compared to devices designed 
without robustness criteria. We show that conventional metasurface designs can be made 
robust using additional topology optimization as refinement. We also find that robust 
metasurfaces are relatively insensitive to small scale, random geometric perturbations. An 
analysis of the optical modes of these devices indicate that robustness arises from the non-
trivial interaction of these modes, and that such behavior relies on numerical optimization and 
cannot be achieved using simple design rules. Finally, we show that topology optimization 
can be applied to design robustness against refractive index variations as well as other 
parameters of interest. 

Appendix A: Wavelength and incidence angle sensitivity 

While all of the above devices were designed only for the targeted wavelength and incidence 
angle, we compute their performance at under non-ideal conditions. Figure 11(a) shows the 
deflectors’ performance under different wavelengths. It is interesting to note that the robust 
device exhibits better bandwidth than the non-robust device despite wavelength no such 
constraint having been placed during optimization. Figure 11(b) shows the absolute efficiency 
of both deflectors as a function of incidence angle. Both robust and non-robust metagratings 
perform well under non-normal incidence. The +2 degree angle is a limit that arises from the 
cutoff of the diffracted beam at larger incidence angles. 

 

Fig. 11. (a) Absolute efficiency as a function of wavelength for both robust and non-robust 
metasurfaces from the main text. (b) Absolute efficiency as a function of incidence angle for 
both robust and non-robust metasurfaces from the main text. Incidence angle is given as the 
value in air. 
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