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ABSTRACT: A longstanding objective of machine learning-enabled
inverse design is the realization of inverse neural networks that can
instantaneously output a device given a desired optical function. For
complex freeform devices, generative adversarial networks (GANs)
can learn from images of freeform devices, but basic GAN
architectures are unable to fully capture the intricate features of
topologically complex structures. We show that by coupling
progressive growth of the network architecture and training set
with the GAN framework, generative networks can be trained to
output high-performance, robust freeform metasurface devices. A
combination of convolutional and self-attention layers in the network
enable the accurate capture of both short- and long-range spatial
patterns within topologically complex layouts. In applying this training methodology to metagratings, the best generated devices have
efficiency and robustness metrics that compare with or outperform the best devices produced by gradient-based topology
optimization with comparable computational cost. This study showcases the capability of generative neural networks to capture
highly intricate geometric trends in physical devices, such as robustness constraints in freeform metasurfaces, and demonstrates their
potential as black box inverse design tools for complex photonic technologies.
KEYWORDS: Generative adversarial networks, dielectric metasurfaces, metagrating, progressive growth, self-attention, inverse design

■ INTRODUCTION

Metasurfaces are nanostructured electromagnetic media with
responses tailored by structure geometry.1−3 They are an
emergent technology relevant to a wide scope of applications,
including those in imaging,4 sensing,5 polarization control,6

and holography.7 The metasurface design process involves the
creation of a library of meta-atoms which are subwavelength-
or wavelength-scale structures that possess tailored optical
response parameters such as amplitude, phase, polarization,
and dispersion. A subset of meta-atoms is then stitched
together to produce the desired macroscopic optical device.
Meta-atoms can be specified as simple geometric shapes based
on physical intuition, which work well for a limited subset of
optical functions, or as complex freeform shapes based on
numerical optimization.8 For the latter, which is the focus here,
design methods ranging from topology optimization9,10 to
heuristic methods11 have enabled high-efficiency, multifunc-
tional metagratings,12−15 and metasurfaces.16,17

It is an open question how to effectively and efficiently fill
out a meta-atom library of freeform elements, which can
include many thousands of structures. One option is to
optimize every meta-atom from scratch in a brute force
fashion. This is computationally expensive, as each meta-atom
optimization requires hundreds to thousands of simulations,
and the computation time scales linearly with the size of the

meta-atom library. An alternative method is to first optimize a
sparse sampling of the meta-atom library and then use high-
dimensional interpolation to fill out the rest of the library. This
scheme has the potential to computationally scale more
efficiently with the size of the meta-atom library because it
utilizes geometric correlations between meta-atoms with
related optical functions. In this vein, conditional generative
networks are an attractive framework for performing high-
dimensional interpolation due to their ability to identify and
capture highly nonlinear distributions within data sets. In
particular, a properly trained conditional generative network
that can generate meta-atom layouts given a desired optical
response parameter input can serve as the meta-atom library
itself.
It remains an open question how to train a neural network to

output high-performance freeform meta-atoms, particularly
those possessing complex constraints such as robustness to
geometric imperfections. Deep discriminative networks can
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serve as inverse models for devices described by a few
geometric parameters18,19 but cannot scale to complex
freeform structures due to the enormity of the design space.
Generative adversarial networks (GANs)20−23 are a more
promising network architecture that can learn salient features
from images of freeform geometries. In a recent study, we
trained a GAN using images of robust topology-optimized
metagratings,21 which are periodic metasurfaces that selectively
diffract incident light to a desired diffraction order. Robustness
here refers to the ability for devices to exhibit high efficiencies
when the layouts are spatially eroded and dilated.24 Our GAN,
which possessed a conventional deep network architecture,
could generate topologically complex metagratings operating
across a range of wavelengths and deflection angles. However,
the efficiencies of the best GAN-generated devices were
consistently lower than those in the training set, and none of
the generated devices were robust. The shortcomings of the
conventional GAN approach are due to a few factors: the
design space of the training set is vast, making high-
dimensional interpolation difficult;25 the limited representation
capacity of convolutional layers in conventional GANs makes
the learning of global structural patterns difficult;26 and the use
of a small training set makes it easy for the discriminator to
overfit.
In this paper, we describe a new training procedure and

network architecture for GANs that enable the neural network
to output robust, freeform metasurfaces with performance
metrics similar to or even exceeding high-performing topology-
optimized devices. Our new training procedure, schematically
presented in Figure 1a, features a combination of innovations.
First, we utilize the progressive growth of GANs (PGGANs),
which is a new GAN training scheme developed in the
computer vision community that supports improved training

stability and the ability to capture spatially fine features from a
high-resolution training set.27 Second, we progressively
augment the training set by identifying high-performance
GAN-generated metasurfaces using an electromagnetic simu-
lator and adding them to the training set, while removing
relatively low-performance devices. Third, we incorporate self-
attention layers into the network, which learn long-range
spatial trends within images.26,28 These layers are comple-
mentary to convolutional layers, which are better at learning
local regional trends within images. This study demonstrates
the ability of neural networks to learn highly complex and
nuanced spatial features from an ensemble of devices.

■ PROBLEM SETUP AND OVERVIEW OF NETWORK
TRAINING

We focus on designing topologically complex metagratings that
deflect normally incident TE-polarized light to the +1
diffraction order for a range of outgoing angles (35−85°)
and operating wavelengths (500−1300 nm). A schematic of
the device is summarized in Figure 1b. The metagratings
comprise 325 nm thick polycrystalline silicon on an SiO2
substrate, and devices are represented as images of single
grating periods with dimensions of 64 × 128 pixels. Each pixel
in the image has a value of either 0 or 1, which represents the
refractive index of air or polycrystalline silicon, respectively.
Mirror symmetry along the y-direction is enforced to simplify
the design space. The deflection efficiency is defined as the
intensity of light deflected to the desired angle, θ, and is
normalized to the incident light intensity in glass.
Prior to PGGAN training, we create a training set containing

600 high-efficiency metasurfaces, each produced by performing
350 iterations of gradient-based topology optimization on an
initially random dielectric distribution. These devices sparsely

Figure 1. Overview of GANs based on progressively growing network architectures and training sets. (a) Schematic of the training protocol. The
initial training set comprises high-performing devices that sparsely sample the device parameter space. The training process consists of multiple
training cycles, each of which involves training the PGGAN from scratch, evaluating the generated devices upon training completion, and
augmenting the training set with the best generated devices. The final trained PGGAN can output device layouts that continuously span the full
device parameter space. (b) Freeform silicon metagratings deflect normally incident light to the +1 diffraction order. Each metagrating period is
described by an Nx by Ny matrix, where each pixel represents silicon or air. The width of the period along the x-direction is λ/sin(θ) and the width
of the period along the y-direction is set to be λ/2.
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sample the design parameter space: the training set devices
sample the wavelength space in increments of 200 nm and the
deflection angle space in increments of 10°. To evaluate the
performance of the training set devices and those generated by
the GAN, we use the Rigorous Coupled-Wave Analysis
(RCWA)29 electromagnetic simulator to compute the
efficiency of geometrically eroded, ideal, and dilated devices.
Our performance metric is defined to be the weighted
efficiency of these three device variants with weights of 0.25,
0.5, and 0.25, respectively, so that both efficiency and
robustness to fabrication imperfections are evaluated.24

Our PGGAN comprises two neural networks, a generator
and discriminator. The inputs to the generator include the
operating wavelength λ, deflection angle θ, and an eight-
dimensional uniformly distributed random noise vector z, and
its output is images of the device layout. Given a distribution of
noise values as inputs, the outputs are a diverse distribution of
device layouts. The discriminator is a classifier that attempts to
distinguish whether a presented input image is from the
generator or the training set. Architecturally, the generator
contains fully connected layers followed by deconvolution
layers, while the discriminator contains convolution layers
followed by fully connected layers. In addition, there are
attention layers that follow each deconvolution and con-
volution layer.
The complete network training process involves training the

PGGAN multiple times from scratch in a cyclic fashion. At the
end of each cycle, the training set is augmented and becomes
the initial training set for the new PGGAN in the following
cycle. We require the PGGAN to be trained from scratch every
time the training set is updated because it is the only way for
the network to accurately learn the nuanced geometric details
of the new training set.

The PGGAN training process in a single training cycle can
be described as a competition between the generator and
discriminator. The discriminator aims to successfully distin-
guish between generated and training set devices, while the
generator aims to fool the discriminator by generating devices
mimicking the training set. The generator and discriminator
train through an iterative process in alternating steps, and upon
training completion the final generator will have learned the
underlying topological features from high-efficiency devices in
the training set and be able to generate layouts with high-
efficiency features. The details pertaining to the training
procedure can be found in the Supporting Information.

Progressive Growth of the Network Architecture. To
improve the stability of the training process and enhance the
capabilities of both the generator and discriminator, we
progressively grow the resolution of the PGGAN during each
training cycle.27 In this scheme, the PGGAN architecture
operates with a low spatial resolution during initial training
iterations and focuses on learning spatially coarse features from
the training set. Additional neural layers are then progressively
added, at which point the PGGAN focuses on learning finer-
scale details from the training set. Given the success of these
techniques to improve the generation of high-resolution
images, such as the faces of people,27 these networks serve
as plausible candidate solutions to improving the generation of
physical devices such as metasurfaces.
Schematics of the PGGAN architecture at different stages of

network training are presented in Figure 2a. The initial
network architecture processes devices with a resolution of
only 8 × 16 pixels and trains from downsampled images of the
training set. Our use of low-resolution devices and networks
has three main implications. First, it allows the network to
focus on learning the large-scale topological features from the

Figure 2. PGGAN network architecture and training process. (a) Schematic of a single cycle of the network training process in which the
generative model, discriminative model, and network resolution progressively grow. Training starts by processing training set devices with a
resolution of 8 × 16 pixels, downsampled from full resolution devices of 64 × 128 pixels. The device and network resolution gradually increase to
the full resolution of the original training set. (b,c) Transition process for the generator and discriminator as they increase in spatial resolution. In
(b,c), the impact of newly added deconvolutional and convolutional layers, respectively, is progressively increased in the network architecture by
linearly tuning the weight α from 0 to 1. (d) Schematic of an attention layer. The attention layer first learns an attention map that measures the
correlation between every two pixels within the input feature map and then aggregates the input feature map by multiplying this attention map.
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training set. Second, it restricts the design space to a much
smaller dimension, which improves the overall accuracy of the
network training process itself. Third, training at lower spatial
resolutions leads to dramatic reductions in computational cost.
Once the network has undergone sufficient training with

these low-resolution devices, the network and device resolution
increase to 16 × 32 pixels, and then later to 32 × 64 pixels and
finally to 64 × 128 pixels. During each increase in resolution,
an additional deconvolution and convolution layer is added to
the generator and discriminator, respectively, each with
dimensions matching the new device resolution. With these
added layers, the PGGAN accurately learns and captures
higher spatial resolution features in the training set.
During the transition moments in the training process when

the spatial resolution of the network increases, care must be
taken to ensure that this increase in spatial resolution does not
destabilize the network. These instabilities can arise because
the convolution and deconvolution layers that are added to the
PGGAN during these moments are untrained and possess
random weights. To address this issue, the impact of the added
convolution and deconvolution layers are gradually incorpo-
rated into the PGGAN in a manner illustrated in Figure 2b,c.
Consider the PGGAN generator. When a new deconvolution
layer is added to the network, the device at the output of this
layer Xnew is the weighted superposition of two images. The
first image is Xdeconv, which is the device outputted from the
prior deconvolution layer and processed by the new
deconvolution layer. The second image is the device Xupsampled,
which is the device outputted from the prior deconvolution
layer and upsampled to match the spatial resolution of the new
deconvolution layer. Xnew relates to Xupsampled and Xdeconv with
the following expression:

X X X(1 )new deconv upsampledα α= * + − * (1)

Over the course of five thousand network training iterations,
α linearly increases from zero to one. Initially, α is zero and the
untrained deconvolution layer does not contribute to the
generated device pattern. As training progresses and α
increases, this layer begins to properly learn and capture

spatially fine device features, and it contributes more to Xnew.
After five thousand iterations, the generated device patterns are
exclusively generated from the new deconvolution layer. Five
thousand additional training iterations are performed after α is
set to one to further stabilize the network, after which the
network resolution is increased again and the process is
repeated. The PGGAN discriminator evolves in a similar way,
except that convolutional layers are progressively added to the
network instead of deconvolutional layers. Image down-
sampling is performed using average pooling.

Self-Attention Mechanism. In both the generator and
discriminator, we add a self-attention layer (Figure 2d) after
each deconvolution and convolution layer. Self-attention layers
enable the network to better learn global geometric
trends26,28,30 and are complementary concepts to convolu-
tional layers, which are better at learning local geometric
information. In the case of dog images, as an example,
convolutional layers are well suited to learn the fur texture of
dogs while self-attention layers are better at learning the global
shape of dogs.26 This multiscalar learning approach is
important for metasurfaces, which strongly depend on both
fine local features and global structural geometry.
We summarize the concept as follows. For each convolu-

tional and deconvolutional layer output, we first flatten the
outputted image into a vector x. We then transform x into
three distinct feature maps: f(x) = x·Wf, g(x) = x·Wg, and h(x)
= x·Wh, where Wf, Wg, and Wh are learnable weight matrices.
By multiplying f(x) and g(x)T, we obtain an attention map that
measures the correlation between every feature of f(x) to every
feature of g(x). This map represents how much attention the
model should pay to the ith feature when synthesizing the jth
feature. The output of the attention layer is obtained by
multiplying the attention map with the feature map h(x). As
the network trains, the model will learn the dependencies and
correlations between different device regions. The performance
gain by adding attention layers is shown in Figure S2.

Progressive Growth of the Training Set. It is essential
to improve the training set in order for the generator to
consistently generate devices with greater geometric diversity

Figure 3. Evolution of weighted efficiency distributions from the training set over the course of the full cyclic network training process for three
representative wavelength-deflection angle pairs: (800 nm, 40°), (1000 nm, 55°) and (1200 nm, 70°). These efficiency distributions are sampled
over the course of four network training cycles. The average weighted efficiency of the training set for each wavelength-deflection angle pair is
denoted in each plot.
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and enhanced performance compared to the initial training set.
We augment the training set at the end of each PGGAN
training cycle by first generating an ensemble of devices and
calculating the performance metric of each device. Generated
devices with performance metrics higher than the average
metric value in the training set are added to the training set,
while devices in the training set with lower than threshold
metric values are removed (see Supporting Information for
more details). Our ability to improve the PGGAN using
PGGAN-generated devices leads to a positive feedback loop
between network and training set augmentation: improve-
ments to the training set leads to a better GAN model, while
improvements to the GAN model lead to enhanced generation
of high-performance metasurfaces that are subsequently added
to the training set. In this manner, the network is able to more
effectively learn the desired features from the training set and
also better explore and interpolate topological features in the
design space.
Histograms of training set device efficiencies for three

representative wavelength−deflection angle pairs, over the
course of four cycles of network training, are summarized in
Figure 3. As training progresses, more high-performance
devices are added to the training set and both the quantity
and average efficiency of the devices in the training set
increases. The average weighted efficiency of the training set
almost converges to an asymptotic value after the fourth
training cycle.

■ RESULTS AND DISCUSSION

We produce final device designs from our fully trained
PGGAN by generating two thousand devices for a given
wavelength-deflection angle pair, evaluating the weight
efficiencies of these devices using RCWA, and taking the

highest efficiency device. We choose a discrete operating
device parameter space that includes wavelengths ranging from
500 to 1300 nm in increments of 50 nm and deflection angles
ranging from 35° to 85° in increments of 5°, though we note
that the generative network can sample the input parameters in
a continuous manner. As benchmarks, we also design devices
in the following two ways: we design a total of 9350 devices
using gradient-based topology optimization31 (50 devices for
each wavelength-angle pair) and select the best device for a
given wavelength-deflection angle pair, and we train a basic
GAN without progressive growth and filter for high-perform-
ance generated devices in the same manner above. Plots that
summarize the efficiencies of devices designed using these
three methods are shown in Figure 4a−c.
A comparison between Figure 4a,c shows that the best

devices generated by the PGGAN have efficiencies similar to
or even better than those produced from gradient-based
topology optimization. Statistically, the best PGGAN-gener-
ated devices outperform the best device designed using
gradient-based topology optimization for 53% of the wave-
length-deflection angle pairs. Furthermore, when averaging all
of the efficiency values from the plots in Figure 4a,c, the
average efficiency value from the PGGAN is 3% higher than
that from gradient-based topology optimization. The high
efficiencies for devices generated at all wavelength−deflection
angle pairs, including those not covered in the original training
set, indicate that our PGGAN design strategy can properly
generalize across the full wavelength and deflection angle
parameter space without significant overfitting. An examination
of the best generated devices as a function of wavelength and
angle is presented in the Supporting Information Figure S4 and
displays a diversity of layouts, showing that the network does
not collapse to a particular geometric output but is able to

Figure 4. Summary of PGGAN performance. (a−c) Plot of the best devices, quantified by weighted efficiency, at each wavelength-deflection angle
pair for devices designed using (a) gradient-based topology optimization, (b) basic GAN, and (c) PGGAN. The initial training set parameters used
for the basic GAN and PGGAN are denoted by the solid black boxes in (a). (d) Average weighted efficiency of generated devices as a function of
training iteration for the basic GAN (purple) and four PGGAN cycles (blue, green, yellow, and red for the first, second, third, and fourth cycles,
respectively). The impact of network growth on network performance can be visualized in comparing the PGGAN cycle1 and basic GAN efficiency
curves. The impact of training set augmentation on network performance can be visualized in comparing the PGGAN efficiency curves for different
cycles. (e) Representative efficiency histograms of basic GAN-generated devices (red) and PGGAN-generated devices (blue). Five hundred devices
are generated from both the basic GAN and PGGAN for each wavelength-deflection angle pair. The highest weighted efficiency value in each
histogram are denoted.
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conditionally capture the nuanced geometric variations
spanning the input parameter space.
A comparison between Figure 4b,c shows that the PGGAN

outperforms the basic GAN by a wide margin, further
demonstrating the effectiveness of the progressive growth
strategy. For 96% of the wavelength-deflection angle pairs, the
best PGGAN-generated devices outperform those generated
from the basic GAN. This performance disparity can be further
visualized by tracking device efficiencies over the course of
network training for the PGGAN and basic GAN, which is
summarized in Figure 4d. For the basic GAN, the average
efficiency of the generated devices initially increases but
plateaus after approximately 20 000 iterations. For the
PGGAN, the average efficiency of the generated devices
increases over the course of the full network training process,
and upon training completion PGGAN-generated devices have
an average efficiency that is 14% higher than those generated
by the basic GAN. The superior performance of the PGGAN
compared to the basic GAN is further enforced in Figure 4e,
which shows efficiency histograms generated from the two
methods. We find that the PGGAN consistently generates
devices with efficiency distributions that have peak and average
values that are higher than those from the basic GAN.
An estimation of the computational cost (in the Supporting

Information) for the differing optimization methods featured
in Figure 4a,c indicates that the PGGAN concept requires the
less computational overhead than gradient-based topology
optimization. For the gradient-based topology-optimized
devices in Figure 4a, 19.6 M RCWA EM simulations are
required. The PGGAN featured in Figure 4c requires the
production of the initial training set, evaluation of generated
devices during network training to grow the training set, and
the evaluation of final PGGAN-generated devices. In total, 7.0
M RCWA EM simulations are required. Furthermore, most of
the computational cost with the PGGAN is a one-time cost
incurred during network training, such that a fully trained
network only requires the evaluation of generated devices to
produce high-performance structures and does not require any
refinement steps.

■ CONCLUSION
In summary, we show that a generative neural network based
on the PGGAN architecture can learn to output high-
efficiency, robust metasurfaces from a sparse training set.
Compared to the basic GAN, our modified PGGAN utilizes
three new principle features: progressive network growth,
which enables more robust learning of local topological
features from the training set; the self-attention mechanism,
which allows the network to better learn global spatial
correlations within device images; and progressive growth of
the training set, from which high-efficiency topological features
in the design space can be better captured. Our training results
indicate that the PGGAN can generate devices that compare
well with those generated from gradient-based topology
optimization while incurring less computational cost.
Directions for future work include identifying methods to

reduce the computational cost of the training set and further
optimizing the PGGAN architecture and a resolution transition
scheme. While we focus on metagratings as the model system
for this proof-of-concept demonstration, it is clear that
PGGAN’s superior modeling capacity over GAN allows it to
handle more complex parameter spaces for practical utility. We
anticipate that our PGGAN can apply to aperiodic meta-atom

structures with tailored dispersion and scattering properties.
We also anticipate that the PGGAN approach can be widely
utilized in other fields that require the design of high-
resolution, high-dimensional layouts, particularly in domains
where simulators can quantitatively evaluate the performance
of generated layouts.
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