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Abstract

Electrical interconnects that adopt self-similar, serpentine layouts offer exceptional levels of stretchability in systems that consist of
collections of small, non-stretchable active devices in the so-called island–bridge design. This paper develops analytical models of flex-
ibility and elastic stretchability for such structures, and establishes recursive formulae at different orders of self-similarity. The analytic
solutions agree well with finite element analysis, with both demonstrating that the elastic stretchability more than doubles when the order
of the self-similar structure increases by one. Design optimization yields 90% and 50% elastic stretchability for systems with surface filling
ratios of 50% and 70% of active devices, respectively.
� 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Interest in the development of electronic and optoelec-
tronic systems that offer elastic response to large strain
(�1%) deformation has grown rapidly in recent years
[1–10], due in part to a range of important application
possibilities that cannot be addressed with established
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technologies, such as wearable photovoltaics [11], “epider-
mal” health/wellness monitors [8], eyeball-like digital cam-
eras [9,12] and sensitive robotic skins [13–15]. Many of
these stretchable devices adopt the island–bridge design
[8,12,16–18], where the active components are distributed
in small, localized regions (i.e. islands) and are joined by
narrow, deformable electrical and/or mechanical intercon-
nects (i.e. bridges). Under stretching conditions, the rela-
tively stiff islands effectively isolate the active components
(usually brittle materials) from strains that could cause
fracture (e.g. <1%); the bridge structures accommodate
nearly all of the deformation [17–19]. For many practical
devices, the island–bridge design must achieve simulta-
neously two competing goals, i.e. high surface filling ratio
of active devices, and high stretchability of the entire
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system. Demonstrated design solutions involve either ser-
pentine [1,8,17,20–27] or non-coplanar [12,18] intercon-
nects. These technologies, however, typically give levels of
total stretchability that are less than 50%, in systems that
do not significantly sacrifice areal coverage. Recently, Xu
et al. [19] illustrated an alternative type of interconnect
design that exploits self-similar serpentine geometries
(shown in Fig. 1a), a type of space-filling curve. This
concept enabled lithium-ion batteries with a biaxial stretch-
ability of up to�300%, and areal coverages of active materi-
als as high as �50%. Comprehensive experimental and
numerical investigations indicated that such self-similar
serpentine interconnects possess improved levels of stretch-
ability compared to traditional serpentine structures for a
given spacing between adjacent islands. The nature of the
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Fig. 1. (a) Optical images of the Al electrode pads and self-similar interconn
printing on a sheet of silicone (middle panel; oblique view, in a bent geometry)
geometry), for a stretchable Li-ion battery; (b) schematic illustration on the
schematic illustration on the geometric construction of the self-similar serpe
permission from Xu et al. [19], � 2013, Nature Publishing Group.
space-filling geometry in these structures and the mecha-
nisms for their ordered unraveling were found to play impor-
tant roles.

This study aims at developing an analytic model to
study the flexibility and elastic stretchability (referred to
simply as stretchability in the following) of self-similar ser-
pentine interconnects, and to establish the design guidelines
for optimizing the stretching limit. Here, we focus on the
scenario that the interconnects are not bonded to the sup-
porting substrate such that deformation can occur freely
and the interactions with the substrate can be neglected.
Such freely suspended interconnects can be fabricated by
either of two methods: (i) molding surface relief structures
on the elastomeric substrate [16,18,28] and bonding the
islands onto the top of the raised relief; or (ii) designing
c Self-similar serpentine (m=4, η=2.41) 
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geometric construction of the self-similar rectangular interconnect; (c)
ntine interconnect. The scale bars in (a) are 2 mm. (a) is reprinted with
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the mask of SiO2 deposition to enable selective bonding of
the islands onto the substrate [29,30], while leaving the
interconnects with a minimum interaction with the sub-
strate. The present study mainly focuses on relative thick
interconnects with the thickness comparable to the width,
as required for applications that demand low electrical
resistance, such as wireless inductive coils [19], and photo-
voltaic modules [11]. In such cases, the deformation of the
interconnects is governed by in-plane bending, rather than
buckling, when the system is under stretching. Here, the
critical buckling strain is large compared to the stretchabil-
ity [31], such that buckling is not triggered within the range
of acceptable deformations. This mechanics is qualitatively
different from that of the types of free-standing, thin ser-
pentine interconnects that have been investigated previ-
ously [17,31–33]. For free-standing, thick self-similar
interconnects, analytic models of the flexibility and stretch-
ability are established in this study. The models are then
extended to arbitrary self-similar orders. The results estab-
lish design guidelines for practical applications.

This paper is outlined as follows: Section 2 focuses on
the simplest geometric configuration, self-similar rectangu-
lar interconnects, to illustrate the mechanics model for ana-
lyzing the flexibility and stretchability. The analytic model
is extended to generalized self-similar rectangular and ser-
pentine interconnects in Section 3. The stretchability of
self-similar interconnects is studied in Section 4. Section 5
presents the optimal design of self-similar serpentine inter-
connects for stretchable electronics to illustrate its advan-
tage in achieving high system stretchability.

2. Self-similar rectangular interconnects

This section focuses on a geometrically simple self-sim-
ilar interconnect in a rectangular configuration (as shown
in Fig. 1b), to illustrate its structure, flexibility and
stretchability. The rectangular interconnect is a variant
of the traditional serpentine interconnect (top panel of
Fig. 1c), and is convenient for constructing self-similar
structures because of its simple geometry. To determine
the flexibility of self-similar rectangular interconnects,
the key is to establish the relation between the flexibility
of neighboring orders, i.e. the recursion formula. We first
take the first order self-similar rectangular interconnect as
an example to illustrate the model as in Section 2.2, and
then generalize the theoretical framework to the second
order and arbitrary order in Sections 2.3 and 2.4,
respectively.

2.1. Geometry

This subsection introduces the geometric construction of
self-similar rectangular interconnects. The first order (origi-
nal) rectangular interconnect consists of two sets of straight
wires that are perpendicular to each other and connected in
series, as shown in the black box of Fig. 1b. The second
order rectangular interconnect, shown in the blue box of
Fig. 1b, is created by reducing the scale of the first order
interconnect, rotating the structure by 90� and then
connecting multiple copies of it in a fashion that repro-
duces the layout of original geometry. The wide blue line
in Fig. 1b represents the second order geometry that is sim-
ilar to the first order rectangular geometry. By implement-
ing the same algorithm, we can generate the third- and
fourth order rectangular interconnects, as illustrated in
the red and purple boxes of Fig. 1b, where the red and pur-
ple lines denote the third- and fourth order geometries,
respectively.

For self-similar rectangular interconnects, let m denote
the number of unit cell and g the height/spacing aspect
ratio at each order. Therefore the lengths of horizontal
and vertical lines of the ith order (i = 1, . . . ,n), l(i) and h(i)

(Fig. 1b), are related by

hðiÞ ¼ glðiÞ ð1Þ
In addition, the height of ith order geometry equals to the
distance between two ends of (i � 1)th order geometry, that
is

hðiÞ ¼ 2mlði�1Þ ði ¼ 2; . . . ; nÞ ð2Þ
Eqs. (1) and (2) give the length and height at any order in
terms of l(n), g and m, as

lðiÞ ¼ ðg=2mÞn�ilðnÞ; hðiÞ ¼ gðg=2mÞn�ilðnÞ; ði ¼ 1; . . . ; nÞ
ð3Þ

This indicates that the geometry of an arbitrary self-similar
rectangular interconnect is characterized by one base
length (l(n)) and three non-dimensional parameters, namely
the self-similar order (n), the height/spacing ratio (g) and
number (m) of unit cell. It should be mentioned that, for
n P 3, there is an additional constraint on the height/spac-
ing ratio g because of the following relation, which can be
observed from the geometry of the third order rectangular
interconnect shown in Figs. 1 and 3 (to be discussed):

lðiÞ ¼ ð2mh þ 1Þlði�2Þ ði ¼ 3; . . . ; nÞ ð4Þ
where mh is the number of full unit cells in the structure
represented by the horizontal part of the ith order geome-
try (i = 3, . . . ,n). Eqs. (3) and (4) give the constraint on the
height/spacing ratio g for n P 3:

g ¼ 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mh þ 1
p ði ¼ 3; . . . ; nÞ ð5Þ

i.e. the height/spacing ratio can only take some discrete
values for n P 3. Fig. 1b shows a set of self-similar rectan-
gular interconnects, from n=1 to 4, with m = 4 and
g ¼ 8=

ffiffiffiffiffi
11
p

.

2.2. Flexibility of first order rectangular interconnects

Fig. 2a shows a schematic illustration of the first order
self-similar rectangular interconnect with m unit cells and
height/spacing ratio g. As illustrated in Fig. 2b, a represen-
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Fig. 2. (a) A freely suspended first order rectangular interconnect, clamped at the left end, and subject to an axial force N, shear force Q, and bending
moment M, at the right end. (b) Exploded view and free body diagram of the kth unit cell of first order rectangular interconnect.
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Fig. 3. The exploded view of a representative unit cell for the (a) second order and (b) third order self-similar rectangular interconnect.
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tative unit cell (e.g. the kth unit cell) of the first order struc-
ture is composed of five straight wires (i.e. zeroth order
structure) (Parts I–V). The vertical wires, Parts I and III,
have a length of h(1)/2, and Part II has a length of h(1).
The horizontal wires, Parts IV and V, have a length of l(1).

Consider the first order rectangular interconnect
clamped at the left end, and subject to an axial force N

(along the direction between the two ends of the intercon-
nect), a shear force Q (normal to N) and a bending moment
M, at the right end, within the plane of interconnect, as
shown in Fig. 2a. The width (w) and thickness (t) of the ser-
pentine interconnect are usually much smaller than the
length such that the structure can be modeled as a curved
beam. Let u and v denote the displacements at the right
end, along and normal to the axial direction of the inter-
connect (parallel to N and to Q), respectively, and h is
the rotation angle (Fig. 2a). They are related to (N, Q,
M) via the strain energy W(1) in the interconnect by

u

m

h

0
B@

1
CA ¼ @W ð1Þ=@N
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2
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0
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1
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where W(1) = (N, Q, M)T(1)(N, Q, M)T/2 is a quadratic
function of N, Q, and M for linear elastic behavior of the
interconnect; and T(1) is the symmetric flexibility matrix
of the first order interconnect and is to be determined.
The strain energy also equals the sum of strain energy
W(0) in all zeroth order interconnects (Parts I–V), i.e.

W ð1Þ ¼ W ð0Þ ¼
Xm

k¼1

W I
k þ W II

k þ W III
k þ W IV

k þ W V
k

� �
ð7Þ

where W I
k to W V

k represent the strain energy of each compo-
nent in the kth unit cell. For the zeroth order structure, i.e.
a straight wire with length l and bending stiffness EI, the
beam theory gives the flexibility matrix as [34]

Tð0ÞðlÞ ¼ 1

6EI

0 0 0

0 2l3 3l2

0 3l2 6l

0
B@

1
CA ð8Þ

Here the membrane energy is neglected. The free body dia-
gram of the kth unit cell of the first order interconnect
(Fig. 2b) gives the axial force, shear force and bending mo-
ment in each wire, and the strain energy of each zeroth or-
der interconnect can then be obtained as

W I
k

W II
k

W III
k

W IV
k

W V
k

0
BBBBBB@

1
CCCCCCA
¼ 1

2
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Substitution of Eq. (9) into Eq. (7) gives the recursive
formula between the flexibility matrices of first and zeroth
order interconnects as

Tð1Þ ¼
Xm

k¼1

DI T
ð0Þ½hð1Þ=2�DT

I þDII T
ð0Þ½hð1Þ�DT

II

þDIII T
ð0Þ½hð1Þ=2�DT

III þDIV Tð0Þ½lð1Þ�DT
IV þDV Tð0Þ½lð1Þ�DT

V

( )
ð11Þ

Substitution of T(0) in Eq. (8) into the above equation gives
a simple expression of the flexibility of first order intercon-
nect in terms of the number of unit cells m, height/spacing
ratio g and l(1):

Tð1Þ m;g;lð1Þ
� �

¼ 1

EI

m g3þ3g2

6
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4
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For the convenience of generalization to higher order (n)
structure, the following non-dimensional form of flexibility
matrix is adopted:

u=lðiÞ

m=lðiÞ

h

2
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3
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where TðiÞ is dimensionless, and Tð1Þ is given by

Tð1Þðm; gÞ ¼
m g3þ3g2

6
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4
0
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4
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3
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2
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For the zeroth order structure, i.e. a straight wire of
length k, the non-dimensional flexibility matrix is defined
as ðu=k; m=k; hÞT ¼ ðk=EIÞTð0ÞðNk;Qk;MÞT , where
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Tð0Þ ¼
0 0 0
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1
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2.3. Flexibility of the second order rectangular interconnect

The recursive formula for the flexibility matrix of the
second order interconnect is established in this section.
A representative unit cell of the second order structure
is composed of three first order structures (Parts I–III),
and two straight wires (i.e. zeroth order structure) (Parts
IV and V) with length of l(2), as illustrated in Fig. 3a.
The first order structures, Parts I and III, consist of m/2
(m is an even integer) unit cells, and Part II consists of
m unit cells.

The strain energy of the second order structure can
be expressed in terms of the dimensionless flexibility
matrix as

W ð2Þ ¼ lð2Þ

2EI
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� �
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2
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ð16Þ

where Tð2Þ is to be determined. The strain energy also
equals the sum of strain energy in all first order (Parts
I–III, Fig. 3a) and zeroth order (Parts IV and V, Fig. 3a)
interconnects, i.e.

W ð2Þ ¼
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is the strain energy in Part II (first order structure, m unit
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0 0 1

2
4

3
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normalized DII in Eq. (10) (with l(1) and h(1) replaced by
l(2) and h(2), respectively);
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are the strain energy in Parts IV and V (zeroth order struc-
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Substitution of Eqs. (18)–(20) into Eq. (17) gives the
recursive formula for the flexibility matrix of second order
interconnect as

Tð2Þ ¼ g
2m

g
2m 0 0

0 g
2m 0

0 0 1

0
BB@

1
CCA

�
Xm

k¼1

DI Tð1ÞKðmgÞþKTðmgÞT ð1Þ
� �

DT
I þDII Tð1ÞDT

II

þDIII Tð1ÞKðmgÞþKTðmgÞT ð1Þ
� �

DT
III

8<
:

9=
;

�

g
2m 0 0

0 g
2m 0

0 0 1

0
BB@

1
CCAþX

m

k¼1

DIV Tð0ÞDT
IV þDV Tð0ÞDT

V

� �
ð21Þ

where

KðmgÞ ¼ 1

4

1 0 0

0 1 0

0 �mg 1

0
B@

1
CA ð22Þ

results from the identity

Tð1Þ
m
2
; g

� �
¼ Tð1Þðm; gÞKðmgÞ þ KT ðmgÞTð1Þðm; gÞ ð23Þ

Substitution of Tð0Þ and Tð1Þ in Eqs. (15) and (14) into Eq.
(21) gives Tð2Þ as

Tð2Þðm; gÞ ¼
g2 g2þ2m2ðfþ2Þ

12m
m
4
gðf þ 1Þ 0

m
4
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where f = g2 + g + 1.
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Fig. 4. Schematic illustration on the geometric construction of a third order generalized self-similar serpentine interconnect.
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2.4. Flexibility of higher order rectangular interconnect

For the higher order (n P 3) rectangular interconnect, a
representative unit cell is composed of three (n � 1) order
structures (Parts I–III), and two (n � 2) order structures
(Parts IV and V). The (n � 1) order structures, Parts I and
III, consist of m/2 (m is an even integer) unit cells, and Part
II consists of m unit cells. The recursive formula (21) becomes2
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3. Generalized self-similar interconnects

The analytic model for self-similar rectangular intercon-
nects in Section 2 is extended to generalized self-similar
rectangular and serpentine interconnects in this section.

3.1. Generalized self-similar rectangular interconnects

The generalized rectangular interconnect still exhibits
the rectangular shape (shown in Fig. 4), but does not
require the same height/spacing ratio across different
orders, nor the number of unit cell. Each order may have
2 The (n � 2)th order structures (e.g. Parts IV and V in Fig. 3b for the
case of n = 3) have (mh + 1/2) unit cells at the (n � 2)th order geometry.
However, because the contribution of the (n � 2)th order structures to the
overall flexibility is much smaller than that of (n � 1)th order structures,
the dimensionless flexibility of Parts IV and V can be approximated by the
self-similar (n � 2)th order structures with m unit cells, which, as to be
shown by finite element analysis, gives rather good accuracy.
its own height/spacing ratio g(i) and number of unit cell
m(i) (i = 1, . . . ,n), where only m(n) can be an odd number,
and m(1) to m(n) must be even numbers. Fig. 4 illustrates
a generalized third order self-similar rectangular intercon-
nect. For the nth order generalized self-similar rectangular
interconnect, the geometric relations (1)–(3) become

hðiÞ ¼ gðiÞlðiÞ ð26Þ
hðiÞ ¼ 2mði�1Þlði�1Þ ði ¼ 2; . . . ; nÞ ð27Þ

lðiÞ ¼
Yn�i

k¼1

gðn�kþ1Þ

2mðn�kÞ

" #
lðnÞ; hðiÞ

¼ gðiÞ
Yn�i

k¼1

gðn�kþ1Þ

2mðn�kÞ

" #
lðnÞ; ði ¼ 1; . . . ; n� 1Þ ð28Þ

The flexibility matrix Tð0Þ in Eq. (15) remains the same,
while m and g in Eq. (14) for Tð1Þ need to be replaced by
m(1) and g(1), respectively. The recursive formulae for Tð2Þ

in Eq. (21) and TðnÞ (n P 3) in Eq. (25) now become

Tð2Þ ¼ gð2Þ
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for nP3
3.2. Generalized self-similar serpentine interconnects

Fig. 1b and c shows the generalized self-similar serpen-
tine interconnect, which replaces the sharp corners in the
rectangular configuration by half circles, as in Xu et al.’s
experiments [19]. The first order serpentine interconnect
consists of straight wires (length h(1)–l(1)) connected by half
circles (diameter l(1)), as shown in the black box of Fig. 1c.
A representative unit cell of the second order serpentine
interconnect, as shown in the blue box of Fig. 1c, is com-
posed of two (horizontal) straight wires of length l(2) and
a b
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Fig. 5. The effect of self-similar order on the flexibility: the dimensionless flex
self-similar order. In the FEA, the width is fixed as w = 0.4l(1) for the structur
three (vertical) first order serpentine interconnects (two
with lengths h(2)/2 and one with length of h(2)). The flexibil-
ity matrix Tð0Þ for straight wires is still given in Eq. (15),
and the flexibility matrix Tð1Þ for the first order serpentine
interconnect is obtained as [31]

T ð1Þ ¼mð1Þ

24

4g3þ6pg2þ24gþ3p 6ðg2þpgþ2Þ 0
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8><
>:

9>=
>;
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where g = g(1) � 1.
The second to fourth (and higher) order geometries all

exhibit a rectangular geometry (shown in Fig. 1c), which
indicates that, strictly speaking, the self-similarity only
starts at the second order interconnects. Comparison of
the self-similar serpentine structure (Fig. 1c) to the rectan-
gular one (Fig. 1b) suggests that only their first order
geometries are different. Therefore, the recursive formulae
in Eqs. (29) and (30) still hold for the self-similar serpentine
structure.

Substitution of Tð0Þ in Eq. (15) and Tð1Þ in Eq. (14) into
Eq. (31) gives Tð2Þ as

T ð2Þðm;gÞ¼mð2Þ

24

6 gð2Þ
� �2ð4�pÞþ6 gð2Þ
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h i3

T ð1Þ11 24mð2Þp

0 24mð2Þp 24p

2
66664

3
77775

ð32Þ

where p = g(2)[2g(1) + p � 2] + 2.
Fig. 5a and b shows the components of non-dimensional

flexibility vs. the order (n) for self-similar rectangular and
serpentine interconnects for the height/spacing ratio
g ¼ 8=

ffiffiffiffiffi
11
p

and number of unit cell m = 4. The rectangular
interconnect is slightly softer than the serpentine one. The
analytic results are validated by FEA, which is also shown
in Fig. 5a and b, for copper interconnect with the elastic
modulus ECu = 119 GPa and Poisson’s ratio mCu = 0.34.
The component T13 is always zero, and is therefore not
shown. The other five flexibility components all increase
with n, and are more than doubled for each n increasing
by 1. For n from 1 to 4, these components increase by more
than 17 times, indicating that the higher order interconnect
becomes much softer than the lower order one.
 

1 2 3 4
0

2000

4000

6000

8000

10000

12000  Analytic
 FEA

( )n
ij Serpentine

Rectangular

( )
22
nT

( )
23
nT

Self-similar order n

ibility components T ðnÞ11 ; T
ðnÞ
12 and T ðnÞ33

� �
(a) and T ðnÞ22 and T ðnÞ23

� �
(b) vs. the

es of different orders.



7824 Y. Zhang et al. / Acta Materialia 61 (2013) 7816–7827
4. Stretchability

The interconnect usually spans the space between two
rigid device islands (e.g. in Fig. 1a), corresponding to
clamped boundary conditions at the two ends. For stretch-
ing u0 of the self-similar interconnect (with n orders), the
boundary conditions are u = u0, v = 0 and h = 0, and Eq.
(13) then gives the reaction forces, N and Q, and bending
moment M as

N

Q

M

8>><
>>:

9>>=
>>; ¼

EI

lðnÞ
� �3

u0

T ðnÞ11 T ðnÞ22 T ðnÞ33 � T ðnÞ11 T ðnÞ23

h i2

� T ðnÞ33 T ðnÞ12

h i2

�

T ðnÞ22 T ðnÞ33 � T ðnÞ23

h i2

�T ðnÞ12 T ðnÞ33

lðnÞT ðnÞ12 T ðnÞ23

8>>>><
>>>>:

9>>>>=
>>>>;

ð33Þ

since T ðnÞ13 ¼ 0. The maximum strains for the rectangular
and serpentine configurations are analyzed separately in
Sections 4.1 and 4.2. Since no experiment result is available
regarding the stretchability of relative thick self-similar
rectangular or serpentine interconnects, we only compare
the analytic results to the finite element analysis (FEA) re-
sults for validation. The experimental measurement of the
stretchability and comparison to analytic results will be
considered in our future work.

4.1. Generalized self-similar rectangular interconnects

For the first order rectangular interconnect, it can be
shown that the maximum strain occurs at the third nearest
corners from the loading points, as illustrated in Fig. S.1a
(Electronic Supplementary material), which is well sup-
ported by FEA results. The maximum strain in the inter-
connect can be then obtained accurately as

emax ¼
w 2M þ Nhð1Þ þ 2Qlð1Þ
� �

4EI
ð34aÞ

For higher order structures with n P 2, the maximum
strain can be well approximated by

emax 

w 2M þ NhðnÞ þ 2QlðnÞ � Qhðn�1Þ� �

4EI
ðfor n P 2Þ

ð34bÞ
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Based on the yield criterion emax = eyield, where eyield is the
yield strain of the interconnect material (e.g. 0.3% for
copper [35]), the stretchability of the generalized self-simi-
lar rectangular interconnect is obtained as

eð1Þstretchability ¼
eyield lð1Þ

w
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12

�
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ðfor n P 2Þ ð35bÞ

When the applied strain is smaller than the stretchability,
the interconnect undergoes linear, reversible deformations,
and no plastic deformation would accumulate, such that
the interconnect would not suffer from plastic fatigue under
cyclic loadings. Eqs. (35a) and (35b) show clearly that the
stretchability is linearly proportional to eyieldl(n)/w. There-
fore, in order to enhance the stretchability, it is better to
adopt a metallic material with high yield strength and rel-
ative low elastic modulus to give a high yield strain, such
as the nano-grained-size copper, or transforming metal
nanocomposites [36].

4.2. Generalized self-similar serpentine interconnects

For first order serpentine interconnect, as shown in
Fig. S.1b (Electronic Supplementary material), the maxi-
mum strain always occurs at the nearest or second nearest
half circle from the two ends. Let uð0 6 u 6 pÞ represent
the location of this half circle. The bending strain on the
circle can be given by

eðuÞ¼
w 2MþN ½hð1Þ�lð1Þ�þ3Qlð1Þþlð1ÞðN sinu�QcosuÞ
� 

4EI
ð36Þ

It reaches the maximum at u = tan�1(�N/Q), and the
maximum strain is given by

emax ¼
w 2M þ N ½hð1Þ � lð1Þ� þ 3Qlð1Þ þ lð1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 2 þ Q2

pn o
4EI

ð37Þ
The stretchability of the first order serpentine intercon-

nect is then obtained as (via Eq. (33)):
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Þ� T ð1Þ

23½ �
2
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The normalized stretchability estretchabilityw/[eyieldl(1)]
depends only on the height/spacing ratio g(1) and number
of unit cell m(1). It increases with both g(1) and m(1), as
shown in Fig. 6, and saturates to

estretchability ¼
eyield lð1Þ

w
	4½g

ð1Þ�3þ6ðp�2Þ½gð1Þ�2�12ðp�3Þgð1Þ þ9p�28

12gð1Þ

ð39Þ

for m(1)!1 (also shown in Fig. 6).
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For higher order (n P 2) serpentine interconnects,
Eq. (35b), together with the corresponding flexibility
matrix T ð2Þ in Eq. (32) and T ðnÞ in Eq. (30) for serpentine
interconnects, give an excellent approximation to the
stretchability as compared to the FEA shown in Fig. 7.

Fig. 8 shows the normalized stretchability, estretchabilityw/
[eyieldl(n)], vs. the order n for self-similar rectangular and
serpentine interconnects, where the height/spacing ratio
g ¼ 8=

ffiffiffiffiffi
11
p

and number of unit cell m = 4 at different
orders. The stretchability is more than doubled for each n

increasing by 1, indicating the elastic limit of the intercon-
nect can be well improved by adopting higher order self-
similar design. Fig. 8 also shows that the analytic model
agrees very well with the FEA results.

The analytic models and FEA results above are all for
infinitesimal deformation. Table S.1 (Electronic Supple-
mentary material) shows that the effect of finite deforma-
tion on stretchability (determined by FEA) is negligible
for both first and second order serpentine interconnects,
with various combinations of geometric parameters. There-
fore, the analytic models above give good estimations of
the stretchability. In real fabrications, the microscale self-
similar serpentine interconnect may have imperfections
due to lithography defects, especially along the sidewalls
of the lines, and such geometric imperfections will increase
for decreased pattern size (i.e. metal width and rounding
radius) that may occur when increasing the self similar
order. These geometric imperfections are not accounted
for in the present study.

5. Optimal design of self-similar serpentine interconnects for
stretchable electronics

Two competing goals of stretchable electronics [19,37]
are (1) high surface filling ratio of active devices, which
requires small spacing between the device islands
(Fig. 9a); and (2) large stretchability of the system, which
demands large spacing between the device islands. Prior
approaches based on buckling of straight or conventional
serpentine interconnects achieve �100% stretchability
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[17,18,28,30]. The stretchability (esystem
stretchability) of the system is

related to that (einterconnnect
stretchability ) of the interconnect by

esystem
stretchability ¼ einterconnnect

stretchability 1�
ffiffiffi
f

p� �
ð40Þ

where f denotes the surface filling ratio. For �50% surface
filling ratio of active devices, the �100% stretchability of
the interconnect translates to �30% stretchability of the
system, which is low for some biomedical applications of
stretchable electronics (to skin, heart or elbow). The ana-
lytic models in Sections 3 and 4 can guide the design of gen-
eralized self-similar interconnects to simultaneously
achieve the two competing goals above.

The second order serpentine interconnects are studied to
illustrate the design optimization in a square-shaped device
island with a representative size H = 1 mm and the surface
filling ratio of 50% (Fig. 9a). The photolithography tech-
nology [38,39] for fabricating the metal interconnect poses
some constraints, such as the width w P 10 lm, rounding
radius rrounding P 10 lm and the distance between neighbor-
ing arcs d P 5 lm (Fig. 9a). Other geometric parameters
are optimized to achieve large stretchability. Fig. 9b shows
that the stretchability increases with the number of unit
cells m(2). The right panel of Fig. 9b shows the optimal
design, which gives �308% stretchability of the intercon-
nect, and corresponds to �90% stretchability of the system,
outperforming the previous designs using buckled intercon-
nects [18,28]. Even for a much larger surface filling ratio
70%, Eq. (40) still gives �50% stretchability of the system.

6. Conclusions

This paper develops the analytic models of flexibility
and stretchability for the self-similar interconnects. After
the straightforward design optimization, the analytic mod-
els, validated by FEA, show that the higher order self-sim-
ilar interconnect gives very large stretchability of the
system, such as �90% for 50% surface filling ratio of active
devices, or >50% stretchability for 70% surface filling ratio.
The analytic models are useful for the development of
stretchable electronics that simultaneously demand large
areal coverage of active devices, such as stretchable photo-
voltaics [11] and electronic eyeball cameras [12]. The con-
cept of self-similar serpentine configuration could be
further combined with other strategies of stretchability
enhancement, e.g. the control of wrinkling patterns, to give
an enhanced level of stretchability for interconnects
bonded to the substrate.
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